Each PARFOR Worker Writes to the Same File
16 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Paul Safier
le 3 Août 2022
Commenté : Paul Safier
le 30 Jan 2023
I understand that having each worker write to a single file is a no-no. Perhaps as expected, when I run this code, it shows some corrupted values in the final output file; about 10% fails.
I have no interest in the output being in a deterministic order. The workers are spread across multiple Linux machines. The amount of time to complete a run is long compared to the time to write a single line of output.
Can someone recommend an alternative?
% Run a parametric study
var1 = (-60:0.5:60)';
var2 = (-110:0.5:110)';
var3 = (3.5:0.5:18.5)';
% Remove zero entries since their usage prohibited
var1(var1 == 0) = [];
var2(var2 == 0) = [];
var3(var3 == 0) = [];
NS = length(var1)*length(var2)*length(var3); % Number of runs
% Set up the design matrix, desMat
desMat = {var1,var2,var3};
[desMat{:}]=ndgrid(desMat{:});
n=length(desMat);
desMat = reshape(cat(n+1,desMat{:}),[],n);
if exist('./Results.csv', 'file')==2
delete('./Results.csv');
end
parfor kk = 1:NS
var1a = desMat(kk,1); var2a = desMat(kk,2); var3a = desMat(kk,3);
[out1 out2 out3] = Function_Pd(var1a,var2a,var3a);
vec = [var1a var2a var3a out1 out2 out3];
fileID = fopen('Results.csv','a');
fprintf(fileID,'%f %f %f %f %f %f\n',vec);
fclose(fileID);
end
2 commentaires
jessupj
le 3 Août 2022
i don't have a solution. YOu can probably just change
fileID = fopen('Results.csv','a');
to
fileID = fopen( sprintf('Results_%02d.csv',kk),'a');
to save things in different files and then assemble them afterward.
Also, you might check out the exchange if you're just using parallelization for speed without requiring any interim communincation: https://www.mathworks.com/matlabcentral/fileexchange/13775-multicore-parallel-processing-on-multiple-cores
Réponse acceptée
Bruno Luong
le 3 Août 2022
Modifié(e) : Bruno Luong
le 3 Août 2022
May be (I didn't test) you could write in binary file at a deterministic place:
fileID = fopen('Results.bin','wb');
parfor ...
...
fseek(fileID, (kk-1)*length(vec)*8, 'bof'); % 8 is byte size of double, assuming vec is double
fwrite(fileID, vec);
end
fclose(fileID);
5 commentaires
Bruno Luong
le 4 Août 2022
@Paul Safier "Second, is it straightforward to then read the binary file and convert to ascii?"
Yes just read the file by chunks depending on your RAM available then write to ascii file.
But if whatever app that needs those data can read binary file, why not leave it alone. It's luch better than ascii file: smaller, faster, no precision lost.
Plus de réponses (3)
Jeff Miller
le 3 Août 2022
Maybe have each worker write to its own output file and then assemble those after? This answer shows how to get the id for each worker.
3 commentaires
Jeff Miller
le 4 Août 2022
Oh, sorry, I thought that suggestion was to write one file for each iteration of the parfor loop rather than for each separate worker.
Raymond Norris
le 12 Août 2022
@Paul Safier since the order of the file doesn't have to be deterministic, use a data queue to write back to the client and have the client write the csv file.
% Run a parametric study
var1 = (-60:0.5:60)';
var2 = (-110:0.5:110)';
var3 = (3.5:0.5:18.5)';
% Remove zero entries since their usage prohibited
var1(var1 == 0) = [];
var2(var2 == 0) = [];
var3(var3 == 0) = [];
NS = length(var1)*length(var2)*length(var3); % Number of runs
% Set up the design matrix, desMat
desMat = {var1,var2,var3};
[desMat{:}]=ndgrid(desMat{:});
n=length(desMat);
desMat = reshape(cat(n+1,desMat{:}),[],n);
if exist('./Results.csv', 'file')==2
delete('./Results.csv');
end
fileID = fopen('Results.csv','a');
D = parallel.pool.DataQueue;
afterEach(D,@(V)logger(fileID,V))
c = onCleanup(@()fclose(fileID));
parfor kk = 1:NS
var1a = desMat(kk,1); var2a = desMat(kk,2); var3a = desMat(kk,3);
[out1 out2 out3] = Function_Pd(var1a,var2a,var3a);
vec = [var1a var2a var3a out1 out2 out3];
send(D,vec)
end
function logger(fileID,vec)
fprintf(fileID,'%f %f %f %f %f %f\n',vec);
end
4 commentaires
Raymond Norris
le 19 Août 2022
@Paul Safier somewhere/how, you've already closed your file. I can reproduce your warning here
fileID = fopen('Results.csv','a');
c = onCleanup(@()fclose(fileID));
fprintf(fileID,"%f\n",rand);
fclose(fileID);
>> safier
>> clear
Warning: The following error was caught while executing 'onCleanup' class destructor:
Error using fclose
Invalid file identifier. Use fopen to generate a valid file identifier.
Error in safier>@()fclose(fileID) (line 2)
c = onCleanup(@()fclose(fileID));
Error in onCleanup/delete (line 23)
obj.task();
I wouldn't have gotten the warning if I hadn't called
fclose(fileID);
Alexander Denman
le 29 Jan 2023
One option you might consider is using a database, for example PostgreSQL. Ensuring that concurrent writes don't interfere with each other is one of the core functions of a relational database management system.
To do this, you would install PostgreSQL on a machine that is reachable from all of your worker nodes, then create a table to hold the results. You can store essentially any matlab variable in a postgres "bytea" colum by using typecast(getByteStreamFromArray(someVariable),'int8') to convert the variable to one long stream of 8 bit integers.
Then, when each worker is ready to save its results, it opens a database connection using the 'database' function, uploads the results using 'sqlwrite' or 'datainsert', and then closes the connection.
When you retrieve the results from the database, you r-convert the data to its original form using getArrayFromByteStream(typecast(binaryDataFromDatabase),'uint8')).
Voir également
Catégories
En savoir plus sur Parallel Computing Fundamentals dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!