Write matlab code for the following algorithm

2 vues (au cours des 30 derniers jours)
NA
NA le 11 Août 2022
Modifié(e) : NA le 11 Août 2022
I have this algorithm
I write this code for my example
A = [10 -10; 1 0; -1 0; 0 -1 ; 0 1; 11 -10; -1 -1];
C = cov(A).^(-1/2).*A;
M = size(A,1);
omega = C*C';
x0=[];x1=[];x2=[];PS=[];
for i0=1:M
for i1=1:M
for i2=1:M
j = 0;
if isequal(i2,i1)
x2(j) = abs(omega(i1,i0)+omega(i2,i0));
j = j+1;
end
end
x1(j) = min(median(x2,'all')); % lower median
end
x0(j) = 1.1 .* min(median(x1,'all')); % lower median
end
for i3=1:M
PS(i3) = max(omega(i3)/x0);
end
but the above-mentioned code has many problems. I do not know how to fix it.
the result should be
PS = [16.77;0.839;0.839;0.839;0.839;17.609;1.677];

Réponse acceptée

Karim
Karim le 11 Août 2022
Modifié(e) : Karim le 11 Août 2022
I'm not familiar with the algoritm, so it could still have some mistakes left...
However, i was able to identify a couple of mistakes:
  • x1 should be indexed with i1 and x0 with i0
  • you first need to update j before you can use it as an index into x2
  • the condition states that you should enter if i2 is not equal to i1
  • i'm guessing that the matrix A you provided does not have the correct dimensions, i assume it should be a 7x7 matrix?
  • also min( median( ) ) is not the same as the low median, since x2 is a vector the median will return a scalar
Below i used an random A matrix, hence the 'PS' result is not the same as the one you expect. Where did you obtain the matrix A and the expected result?
A = [10 -10; 1 0; -1 0; 0 -1 ; 0 1; 11 -10; -1 -1];
% use a random A matrix...
A = rand(7) * 100;
C = cov(A)^(-1/2) * A;
M = size(A,1);
omega = C*C';
x0 = zeros(M ,1);
x1 = zeros(M ,1);
x2 = zeros(M-1,1); % 1 element less since we neglect the case where i2 == i1
PS = zeros(M ,1);
for i0 = 1:M
for i1 = 1:M
j = 0;
for i2 = 1:M
if i2 ~= i1
j = j + 1;
x2( j ) = abs( omega(i1,i0) + omega(i2,i0) );
end
end
x1( i1 ) = median(x2,'all');
end
x0( i0 ) = 1.1 * median(x1,'all');
end
for i3 = 1:M
PS(i3) = max( omega(i3)/x0 );
end
PS
PS = 7×1
0.2077 0 0.3258 0.2614 0.4130 0 0
  1 commentaire
NA
NA le 11 Août 2022
Modifié(e) : NA le 11 Août 2022
Thank you for your time.
C = cov(A)^(-1/2) * A
the above line means that we normalize the A matrix by its covariance
covariance here is R = eye( M )

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Matrices and Arrays dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by