Please How I can get the figure like in the Picture below

1 vue (au cours des 30 derniers jours)
Abdelkader Hd
Abdelkader Hd le 12 Août 2022
Commenté : Rik le 12 Août 2022
hello community I look to get the figure like in the picture below using contourf and Thank you
clc
clear all
x=[]; y=[]; z=[];
for n=1:1001
x1=0.01*(n-1);
x2=0.01*(n-4);
B=[0,x1,4,x2;x1,3,x2,x2;x1,0,5,x2;0,5,x2,x1];
Pd=eig(B);
if max(real(Pd))<0
disp('fail');
disp(n);
end
B1=[B(1,1),B(1,2);B(2,1),B(2,2)];
B2=[B(3,3),B(3,4);B(4,3),B(4,4)];
B3=[B(1,3),B(1,4);B(2,3),B(2,4)];
Sum=det(B1)+det(B2)+2.*det(B3);
Et=sqrt(Sum-sqrt(Sum.^2-4.*det(B)))./sqrt(2);
E=2*max(0,real(2*Et));
x(n)=x1; y(n)=x2; z(n)=E;
n=n+1;
end
[X,Y] = meshgrid(x,y);
contourf(X,Y,Z,100, 'edgecolor','none');
plot(x,y)
  2 commentaires
Rik
Rik le 12 Août 2022
You should calculate a z for each pair of x and y. I suspect the easiest way to do this is to use the meshgrid before your loop. That way you can also easily pre-allocate your arrays.
Abdelkader Hd
Abdelkader Hd le 12 Août 2022
@Rik thank you for your response, Please if you can write how I can do this, because I beginner use of matlab

Connectez-vous pour commenter.

Réponse acceptée

Rik
Rik le 12 Août 2022
You first need to define your variables:
n=(1:1001);
x=0.01*(n-1);
y=0.01*(n-4);
Now we have vectors, but you want the 2D grid they define:
[X,Y] = meshgrid(x,y);
Now we can create a Z array of the correct size to hold the output and loop through all elements of these arrays by using linear indexing.
Z=zeros(size(X));
for n=1:numel(X)
Z(n)=YourCode(X(n),Y(n));
end
contourf(X,Y,Z,100, 'edgecolor','none');
function E=YourCode(x1,x2)
% Don't forget to write comments to explain what this code does. You will
% have forgotten in 6 months, making it impossible to find any bugs.
B=[0,x1,4,x2;x1,3,x2,x2;x1,0,5,x2;0,5,x2,x1];
Pd=eig(B);
if max(real(Pd))<0
disp('fail');
disp(n);
end
B1=[B(1,1),B(1,2);B(2,1),B(2,2)];
B2=[B(3,3),B(3,4);B(4,3),B(4,4)];
B3=[B(1,3),B(1,4);B(2,3),B(2,4)];
Sum=det(B1)+det(B2)+2.*det(B3);
Et=sqrt(Sum-sqrt(Sum.^2-4.*det(B)))./sqrt(2);
E=2*max(0,real(2*Et));
end
  2 commentaires
Abdelkader Hd
Abdelkader Hd le 12 Août 2022
@Rik Thank you very much brother
Rik
Rik le 12 Août 2022
You're welcome

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Matrix Indexing dans Help Center et File Exchange

Produits


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by