How do I fit two equations that explain two parts of a curve?
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,my equations are: y(t)={(a/b)*(1-exp(-b(x-x_start)),for x_start <= x < x_end %equ1 and {c*exp(-b(x-xend)),for x > x_end %equ2
Here I do not know a,b and c. The idea is that since both equations have b in common, I would like to know how fitting these equations I can get one single value for b. I already fitted these equations individually, but I obtained two values of b, which are different from each fit.
1 commentaire
John D'Errico
le 17 Fév 2015
I predict that your next question will be why is my curvefit not continuous at the break point? I.e., at x_end, the pair of functions will not be continuous.
Réponse acceptée
Sean de Wolski
le 17 Fév 2015
Break the data into two pieces and do the curve fit
xlow = x(x<x_end);
ylow = y*x<x_end);
xhigh = x(x>x_end); % Note you have nothing for x==x_end
yhigh = y(x>x_end);
Now do the curve fit - either with the Curve Fitting App, lsqcurvefit or fitnlm.
7 commentaires
Torsten
le 23 Fév 2015
You programmed it as
function call
xdata=[...];
ydata=[...];
xstart=...;
xend=...;
p0=[1 1 1];
p = lsqnonlin(@(p)myfun(xdata,ydata,xstart,xend,p),p0);
function F = myfun(xdata,ydata,xstart,xend,p)
for i=1:length(xdata)
if (xdata(i) >= xstart) && (xdata(i) < xend)
F(i) = ydata(i)-(p(1)/p(2))*(1-exp(-p(2)(xdata(i)-xstart));
else
F(i)=ydata(i)-(p(3)*exp(-p(2)(xdata(i)-xend));
end
end
?
Best wishes
Torsten.
Plus de réponses (1)
Joep
le 17 Fév 2015
This is very simple solution which works in some cases one thing you need to noticed is the 1-based indexing of matlab.
a=10; b=20; c=-1; d=-3;
for x=1:a
t(x)=x;
y(x)=c*x;
end
for x=a:b
t(x)=t;
y(x)=d*x.^2;
end
figure
plot(t,y)
Voir également
Catégories
En savoir plus sur Fit Postprocessing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!