Asking gas spring model
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello all,
I'm newb here.
I have no idea how to make the fomula of Gas Spring model.
Hope you guys can give me ideas.
Gas spring model (sqrt = square root, ddt = double dot, dt = single dot)
△T =0, T1=T2
Costant Numbers
K=0.5229sqrt(ºR) /sec
γ=1.4 (ratio of specific heat)
R=661.9 in/ºR
Pcr = 0.5283 (critical pressure)
Cd = 0.7 (drag coefficient)
ρ = P/RT
ºR=460+ºF
ºF = 32+0.18 ºC
Variable Numbers
P0 : initial pressure
x0 : Original piston position
Fμ : Frition of piston
A0 : orifice setion-area
Pi,Vi,Ai : Pressure, Volume, Section-area of piston compartment
F : Force on piston load.
Equation of Motion (ddt = double dot, dt = single dot)
Mxddt = (P2A2-P1A1) - Fμ -F
where, P1dt = (-m12dt + ρA1xdt)*γRT1/V1
P2dt = (m12dt - ρA1xdt)*γRT1/V1
if P1≥P2, m12dt = (Cd*A0*K*P1*N12)/sqrt(T1)
N12 = [((P2/P1)^2/γ - (P2/P1)^γ+1/γ) / (((γ-1)/2)*(2/(γ+1))^(γ+1)/(γ-1))]^1/2 for P2/P1 > Pcr
N12 =1 for P2/P1 ≤ Pcr
if P1≤P2, m12dt = -(Cd*A0*K*P1*N12)/sqrt(T1)
N12 = [((P1/P2)^2/γ - (P1/P2)^γ+1/γ) / (((γ-1)/2)*(2/(γ+1))^(γ+1)/(γ-1))]^1/2 for P1/P2 > Pcr
N12 =1 for P1/P2 ≤ Pcr
V1 = A1(L-x-x0-pt)
V2 = A2*x
*Foe adiabatic process : ρ2/ρ1 = (P2/P1)^(1/γ), T2/T1 = (P2/P1)^((γ-1)/γ)
initial temperature : T0
Temp. of chamber 1 : T1 = T0(P1/P0)^((γ-1)/γ)
Temp. of chamber 2 : T2 = T0(P2/P0)^((γ-1)/γ)
ρ1 = P1/RT1 = P1/(R*T0*(P1/P0)^((γ-1)/γ) = (P0/(RT0)) * (P1/P0)^((γ-1)/γ)
ρ1 = P2/RT2 = P2/(R*T0*(P2/P0)^((γ-1)/γ) = (P0/(RT0)) * (P2/P0)^((γ-1)/γ)
continuity equation:
P1dt = (-m12dt + ρA1xdt)*γRT1/V1
P2dt = (m12dt - ρA1xdt)*γRT1/V1
1 commentaire
Vijay
le 8 Sep 2022
Do you want to model your equations?
if yes then please refer Model Differential Algebraic Equations - MATLAB & Simulink - MathWorks India
Réponses (0)
Voir également
Catégories
En savoir plus sur Get Started with Aerospace Blockset dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!