Is there a way to see and understand the steps of reduction while this equation gets solved for V? The result should be somewhere around 6. Thank you.
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
(65-(50-V))/((15-V*0.5)/(V*0.866)) == ((50-V)-((65/(((15-V*0.5)/(V*0.866))+(1.363)))*(1.363)))/((((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((26.5)-(65-(50-V))/((28.4)/((26.5)-((28.4)/((15-V*0.5)/(V*0.866)))))))+1.732))*1.732+(50-V))-((65/(((15-V*0.5)/(V*0.866))+(1.363)))*(1.363)))/((26.86)-(((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((26.5)-(65-(50-V))/((28.4)/((26.5)-((28.4)/((15-V*0.5)/(V*0.866)))))))+1.732))*1.732+(50-V))-36.6)/((28.4)/((26.86)-((65-(50-V))/1.732)))))
0 commentaires
Réponse acceptée
Sam Chak
le 7 Sep 2022
Modifié(e) : Sam Chak
le 7 Sep 2022
Hi @Karl
The equation is super long with many parentheses and it's hard to interpret without spaces. Maybe you can view it this way:
syms V
eqn = (65-(50-V))/((15-V*0.5)/(V*0.866)) == ((50-V)-((65/(((15-V*0.5)/(V*0.866))+(1.363)))*(1.363)))/((((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((26.5)-(65-(50-V))/((28.4)/((26.5)-((28.4)/((15-V*0.5)/(V*0.866)))))))+1.732))*1.732+(50-V))-((65/(((15-V*0.5)/(V*0.866))+(1.363)))*(1.363)))/((26.86)-(((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((26.5)-(65-(50-V))/((28.4)/((26.5)-((28.4)/((15-V*0.5)/(V*0.866)))))))+1.732))*1.732+(50-V))-36.6)/((28.4)/((26.86)-((65-(50-V))/1.732)))))
sol = solve(eqn)
The solution requires finding the roots of a 7th-order polynomial equation.
sol = vpasolve(eqn)
As you can see, one of the five real solutions is , which is probably the one you are referring.
1 commentaire
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!