ODE with Newton method
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to solve the ODE y'=x*cos(x^2)*y^2 using newton's method but my code keeps running forever.
Please, I really appreciate some help with this.
clear all
close all
n=1001
y0=1;
xmin=0; xmax=10;
x=linspace(xmin,xmax,n); %grid
step=(xmax-xmin)/n; %Step Size
yy=zeros(1,n); %Array for results for EEE
yy(1) = y0; % Initial value
%Define the Function and derivative
f=@(x,y) x*cos(x^2)*y^2;
df=@(x,y) 2*x*cos(x^2)*y ;
F=@(x,y,yn) y-yn-step*f(x,y); %Function to set to zero
J=@(x,y) 1 - step*df(x,y); %Jacobian
tol=1.e-5; % Tolerance
for i=xmin+1:n-1
yy(i+1)=yy(i); %initial guess for Newton's method
res=-J(yy(i+1))\F(yy(i+1),yy(i));
while (norm(res,inf)>1.e-10)
yy(i+1)=yy(i+1) + res;
res=-J(yy(1,1))\F(yy(i+1),yy(i));
end
yy(i+1)= yy(i+1) + res;
end
plot(x,yy,'k--')
xlabel('t')
ylabel('y')
Thanks
1 commentaire
Torsten
le 15 Sep 2022
For comparison:
fun = @(x,y)x*cos(x^2)*y^2;
n = 1001;
xmin=0; xmax=10;
x=linspace(xmin,xmax,n); %grid
y0 = 1;
[X,Y] = ode45(fun,x,y0);
plot(X,Y)
Réponses (1)
VBBV
le 15 Sep 2022
Modifié(e) : VBBV
le 15 Sep 2022
clear all
close all
n=1001
y0=1;
xmin=0; xmax=10;
x=linspace(xmin,xmax,n); %grid
step=(xmax-xmin)/n; %Step Size
yy=zeros(1,n); %Array for results for EEE
yy(1) = y0; % Initial value
%Define the Function and derivative
f=@(x,y) x*cos(x^2)*y^2;
df=@(x,y) 2*x*cos(x^2)*y ;
F=@(x,y,yn) y-yn-step*f(x,y) %Function to set to zero
J=@(x,y) 1 - step*df(x,y) %Jacobian
tol=1.e-5; % Tolerance
for i=xmin+1:n-1
yy(i+1)=yy(i); %initial guess for Newton's method
res=-J(yy(i+1),x(i))\F(x(i),yy(i+1),yy(i)); % why missing input arguments ???
while (norm(res,inf)>1.e-10)
yy(i+1)=yy(i+1) + res;
res=-J(yy(1,1),x(i))\F(x(i),yy(i+1),yy(i));
end
yy(i+1)= yy(i+1) + res;
end
plot(x,yy,'k--')
xlabel('t')
ylabel('y')
0 commentaires
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

