Free-knot spline approximation (BSFK) problem
13 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
@BrunoLuong
My data acquisition system produce periodically 1-D measured noised data with the fixed time window length W. I want to produce smoothed data for each window W separately, with specific constraints on continuous (k=2) or smooth (k = 3 or 4) processed signal connections between consecutive time measurement windows. So, for each window W I get finally separate "pp" structure. How to set proper BSFK options setting to fulfil these constraints?
The second question is: Is there any method how to merge separate "pp" structures to one "pp" structure for several processing windows at one?
Add note: May by some processing windows overlap could be required. Do you have any experiance with using BSFK in streaming regime?
13 commentaires
Bruno Luong
le 23 Sep 2022
Modifié(e) : Bruno Luong
le 23 Sep 2022
You could try to recursively enforce the continuity for function/derivative when you call BSFK on the next interval using the pp of the previous interval, just tell BSFK to have function/derivative of the most left knot (current) = previous pp function/derivative at the right knot (previous).
Réponse acceptée
Bruno Luong
le 23 Sep 2022
Modifié(e) : Bruno Luong
le 12 Jan 2023
Reference to BSFK function https://fr.mathworks.com/matlabcentral/fileexchange/25872-free-knot-spline-approximation
Here is the recursive pointwise constraint. You'll see it does the job (zoom in) the transition is not nice
data=load('result_4_8.mat')
data=data.result;
[m,n] = size(data);
x = cellfun(@(data) data.x, data, 'unif', 0);
y = cellfun(@(data) data.y, data, 'unif', 0);
j = 1; % n
close all
figure
hold on
for i = 1:m
% Normalize data so that dy/dx is comparable to y
xij = x{i,j}/10000;
yij = y{i,j}/10000;
options = struct('lambda', 1e-8);
if i >= 2
xleft = pp.breaks(end);
yleft = ppval(pp,xleft);
ydleft = ppval(ppder(pp),xleft);
xij = [xleft; xij];
yij = [yleft; yij];
pntcon = struct('p', {0 1}, 'x', {xleft,xleft}, 'v', {yleft ydleft});
options.pntcon = pntcon;
end
pp =BSFK(xij, yij, 4, [], [], options);
xi = linspace(min(xij),max(xij),1000);
yi = ppval(pp, xi);
plot(xij, yij,'c.');
plot(xi, yi, 'r', 'Linewidth', 2);
drawnow
end
function ppd = ppder(pp)
ppd = pp;
coefs = ppd.coefs;
n = size(coefs,2);
ppd.coefs = coefs(:,1:n-1).*(n-1:-1:1);
ppd.order = ppd.order-1;
end
5 commentaires
Bruno Luong
le 29 Sep 2022
I haven't not studied the complexity of BSFK.
But it seems to me the linear dependency to number of knots is not quite true, I would say it is more like quadratic.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Splines dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!