Minimalization problem LinearConstraint and conjugate gradient optimizer

3 vues (au cours des 30 derniers jours)
Tomi
Tomi le 25 Sep 2022
Commenté : Tomi le 30 Sep 2022
Problem, input data and equations are described in details in attachment. This matrix is called Ms in the below mentioned equation.
The equation is the function F(ω). Omega (ω) are the seven wages which I’m looking for by minimize values of the second equation. The condition is that ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 = 1.
When using Scipy.stats, the LinearConstraint and Conjugate gradient optimizer were used.
The obtained results were: 0.20141944, 0.1590185 , 0.13852083, 0.08702209, 0.13283426, 0.14539815, 0.14247747. Sum of these wages equals 1.
I very appreciate if someone help me out to write code or use Optimization tool to obtain these results.The input matrix Ms is in attached file.
Best Regards,
Tomi
  2 commentaires
Torsten
Torsten le 25 Sep 2022
What are you trying to minimize ? What are your constraints ? I don't get it from your decription.
Tomi
Tomi le 26 Sep 2022
Déplacé(e) : Bruno Luong le 26 Sep 2022
I'm sorry for confusion.
Please see the python code used with Scipy - this code produce the results which I want to write in MatLab script and receive the same results. The second equation is used to minimalize omega wages.
I attached python code.
Best,
Tomi

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 26 Sep 2022
Modifié(e) : Torsten le 26 Sep 2022
According to the Python code, F is maximized, not minimized. Change in the below code if appropriate.
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
format long
[w,fval] = fmincon(@(w)fun(w,M),w0,[],[],Aeq,beq,lb,ub,[],options)
Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.
w = 7×1
0.200081504852845 0.157959395465906 0.137599668689948 0.086444832698773 0.131950619523270 0.144443169868022 0.141520808901237
fval =
-3.039398091210332
function value = fun(w,M)
cM = zeros(7,1);
Mw = M*w;
Mwm = mean(Mw);
Mim = mean(M,1);
for i = 1:7
Mi = M(:,i);
cM(i) = sum((Mi-Mim(i)).*(Mw-Mwm))/sqrt(sum((Mi-Mim(i)).^2)*sum((Mw-Mwm).^2));
end
value = -sum(cM);
end
  2 commentaires
Torsten
Torsten le 28 Sep 2022
Modifié(e) : Torsten le 28 Sep 2022
@Tomi comment moved here:
Dear Torsten,
I'm trying to understand code - need some help.
I very appreciate if you could tell me how the cM(i) equation was created?
Best,
Tomi
Torsten
Torsten le 28 Sep 2022
Modifié(e) : Torsten le 28 Sep 2022
It's the correlation coefficient used in the Python code:

Connectez-vous pour commenter.

Plus de réponses (2)

Tomi
Tomi le 28 Sep 2022
Thank you for your time and help.
I very aprpeciate that.
Best,
Tomi

Tomi
Tomi le 28 Sep 2022
Dear Torsten,
I'm trying to understand code - need some help.
I very appreciate if you could tell me how the cM(i) equation was created?
Best,
Tomi
  5 commentaires
Torsten
Torsten le 29 Sep 2022
Modifié(e) : Torsten le 29 Sep 2022
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
Mim = mean(M,1);
fun = @(w) -sum(arrayfun(@(i)sum((M(:,i)-Mim(i)).*(M*w-mean(M*w)))/sqrt(sum((M(:,i)-Mim(i)).^2)*sum((M*w-mean(M*w)).^2)),1:7));
fun = function_handle with value:
@(w)-sum(arrayfun(@(i)sum((M(:,i)-Mim(i)).*(M*w-mean(M*w)))/sqrt(sum((M(:,i)-Mim(i)).^2)*sum((M*w-mean(M*w)).^2)),1:7))
format long
[w,fval] = fmincon(fun,w0,[],[],Aeq,beq,lb,ub,[],options)
Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.
w = 7×1
0.200081504852845 0.157959395465906 0.137599668689948 0.086444832698773 0.131950619523270 0.144443169868022 0.141520808901237
fval =
-3.039398091210332
Tomi
Tomi le 30 Sep 2022
Thank you very much for your help.
Best,
Tomi

Connectez-vous pour commenter.

Catégories

En savoir plus sur Quadratic Programming and Cone Programming dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by