Minimalization problem LinearConstraint and conjugate gradient optimizer
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Problem, input data and equations are described in details in attachment. This matrix is called Ms in the below mentioned equation.
The equation is the function F(ω). Omega (ω) are the seven wages which I’m looking for by minimize values of the second equation. The condition is that ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 = 1.
When using Scipy.stats, the LinearConstraint and Conjugate gradient optimizer were used.
The obtained results were: 0.20141944, 0.1590185 , 0.13852083, 0.08702209, 0.13283426, 0.14539815, 0.14247747. Sum of these wages equals 1.
I very appreciate if someone help me out to write code or use Optimization tool to obtain these results.The input matrix Ms is in attached file.
Best Regards,
Tomi
2 commentaires
Torsten
le 25 Sep 2022
What are you trying to minimize ? What are your constraints ? I don't get it from your decription.
Réponse acceptée
Torsten
le 26 Sep 2022
Modifié(e) : Torsten
le 26 Sep 2022
According to the Python code, F is maximized, not minimized. Change in the below code if appropriate.
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
format long
[w,fval] = fmincon(@(w)fun(w,M),w0,[],[],Aeq,beq,lb,ub,[],options)
function value = fun(w,M)
cM = zeros(7,1);
Mw = M*w;
Mwm = mean(Mw);
Mim = mean(M,1);
for i = 1:7
Mi = M(:,i);
cM(i) = sum((Mi-Mim(i)).*(Mw-Mwm))/sqrt(sum((Mi-Mim(i)).^2)*sum((Mw-Mwm).^2));
end
value = -sum(cM);
end
Plus de réponses (2)
Tomi
le 28 Sep 2022
5 commentaires
Torsten
le 29 Sep 2022
Modifié(e) : Torsten
le 29 Sep 2022
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
Mim = mean(M,1);
fun = @(w) -sum(arrayfun(@(i)sum((M(:,i)-Mim(i)).*(M*w-mean(M*w)))/sqrt(sum((M(:,i)-Mim(i)).^2)*sum((M*w-mean(M*w)).^2)),1:7));
format long
[w,fval] = fmincon(fun,w0,[],[],Aeq,beq,lb,ub,[],options)
Voir également
Catégories
En savoir plus sur Quadratic Programming and Cone Programming dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!