Solve 2nd order ODE using Euler Method
75 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
VERY new to Matlab...
Trying to implement code to use Euler method for solving second order ODE.
Equation:
x'' + 2*z*w*x' + w*x = 2*sin(2*pi*2*t)
z and w are constants. "t" is time.
Any help would be great.
Thanks!
5 commentaires
James Tursa
le 4 Oct 2022
@Matt - FYI, when you get errors, it is best to post the entire error message along with your code. Regardless, see my answer below ...
Réponse acceptée
James Tursa
le 4 Oct 2022
Modifié(e) : James Tursa
le 4 Oct 2022
You start your loop with i=1, but that means your x_d(i-1) will be x_d(0), an invalid index, hence the error. You need to set initial values for x_d(1) and x(1), and then have your starting loop index be 2. E.g.,
x(1) = initial x value
x_d(1) = initial xdot value
for i=2:n1 % start loop index at 2
x_dd(i-1) = use (i-1) indexes on everything on rhs
x_d(i) = use (i-1) indexes on everything on rhs
x(i) = use (i-1) indexes on everything on rhs
Plus de réponses (1)
Davide Masiello
le 27 Sep 2022
Modifié(e) : Davide Masiello
le 27 Sep 2022
Hi Matt - a second order ODE can be decomposed into two first order ODEs.
The secret is to set 2 variables y as
The you have
An example code is
clear,clc
tspan = [0,1]; % integrates between times 0 and 1
x0 = [1 0]; % initial conditions for x and dx/dt
[t,X] = ode15s(@odeFun,tspan,x0); % passes functions to ODE solver
x = X(:,1);
dxdt = X(:,2);
plot(t,x)
function dydt = odeFun(t,y)
z = 1;
w = 1;
dydt(1,1) = y(2);
dydt(2,1) = 2*z*w*y(2)-w*y(1)+2*sin(2*pi*2*t);
end
1 commentaire
Davide Masiello
le 27 Sep 2022
For more info, I suggest reading the documentation at the following link.
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!