Rotate Basis Vectors Programmatically

6 views (last 30 days)
I have six 6-dimensional basis vectors, i.e., that are orthogonal. I wonder how I can rotate these 6 vectors programatically in the 6D space to build new basis vectors. In other words, is there a way to parameterize these basis vectors so that I can change them without losing orthogonality?
A = [a1,a2,...,a6];
B = [b1,b2,...,b6];
C = [c1,c2,...,c6];
D = [d1,d2,...,d6];
E = [e1,e2,...,e6];
F = [f1,f2,...,f6];
Thank you.

Accepted Answer

Jan
Jan on 30 Sep 2022
See: FEX: Rotation Matrix This creates N-dimensional rotation matrices.
  1 Comment
Mohammad MSBR
Mohammad MSBR on 1 Oct 2022
Thank you, Jan.
The rotation matrix constructed in your suggested code works well. many thanks.

Sign in to comment.

More Answers (2)

Chunru
Chunru on 30 Sep 2022
Edited: Chunru on 30 Sep 2022
V1 = orth(randn(6)) % your original orthonormal basis
V1 = 6×6
-0.4706 0.7349 -0.0145 0.2908 -0.2682 0.2859 -0.3058 -0.0469 0.1456 0.2725 -0.2311 -0.8692 -0.0524 -0.3243 0.7312 0.0009 -0.5190 0.2967 -0.2590 0.3046 0.5051 -0.5918 0.4612 -0.1489 -0.7004 -0.4887 -0.0798 0.2369 0.3948 0.2287 -0.3532 -0.1447 -0.4272 -0.6594 -0.4865 -0.0169
% Then you can apply any other orthonormal basis to it
% For example,
V2 = orth(randn(6)); % get another orthonormal basis
Vnew = V2*V1; % this is the transform of the original orthonormal basis
Vnew*Vnew' % to demonstrate the oorthonormal property
ans = 6×6
1.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 1.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 1.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 1.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 1.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 1.0000
% If you want to control the rotation with angle in N-D space
% Rotate on hyperplane i-j by theta
i=2; j=4; % for example
theta = 5; % deg
R = eye(6); % 6D
R([i j], [i j]) = [cosd(theta) -sind(theta); sind(theta) cosd(theta)]
R = 6×6
1.0000 0 0 0 0 0 0 0.9962 0 -0.0872 0 0 0 0 1.0000 0 0 0 0 0.0872 0 0.9962 0 0 0 0 0 0 1.0000 0 0 0 0 0 0 1.0000
% Then you can have a series of rotation matrices and you can put them
% together as one rotation matrices
  5 Comments

Sign in to comment.


Mohammad MSBR
Mohammad MSBR on 30 Sep 2022
Thank you both for very helpful information.
The only missing point is the order of rotations. For a 6D space, I have 6 rotattions. Is there a way to pick a sequence without losing generality?
In other words, can I lead to the same beses by starting with rotations in different hyperplanes, or does starting with a specific hyperplane always lead to a unique configuration?
Thank you so much.
  4 Comments

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by