Efficient multiplication by large structured matrix of ones and zeros
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to do a relatively simple operation, with a prototypical example:
N = 20;
B = de2bi((1:2^N)-1,N);
c = rand(2^N,1);
result = sum(B.*c,1);
Now this works well, and seems relatively efficient, but when N grows larger, the B matrix will be 2^N x N, which gets prohibitive quite fast. I could make it a sparse matrix which would save half the memory, but that just buys one extra N before memory constraints are reached again. I'm wondering if there are any clever and efficient ways to perform this operation without necessarily saving the B matrix given that it is so structured. Thanks!
0 commentaires
Réponse acceptée
Matt J
le 14 Oct 2022
Modifié(e) : Matt J
le 14 Oct 2022
It may seem counter-intuitive that this version is faster than the versions in my earlier comment, since it does twice as much summation. I imagine it's because it's better multi-threaded and requires less memory allocation.
N = 24; % not so small
c = rand(2^N,1);
tic;
chat = reshape(c,repmat(2,1,N));
e=1:N;
clear result2
for i = 1:N
tmp=sum(chat,setdiff(e,i));
result2(N+1-i) = tmp(2); %#ok<SAGROW>
end
toc
2 commentaires
John D'Errico
le 15 Oct 2022
Nice. The funny thing is, when I first looked at this question, I was thinking that it would not be possible to see a gain over the brute force matrix multiply. My gut was wrong of course.
Plus de réponses (1)
John D'Errico
le 14 Oct 2022
Modifié(e) : John D'Errico
le 14 Oct 2022
Are there more efficient ways to do this? Well, perhaps, arguably so. Why you want to do it, is I supose your problem.
THINK about what you are doing here. What does that multiply do? It forms linear combinations of the vector C, with the bits of the numbers 0:2^N-1.
For example...
N = 5; % small, so we can see what happens.
B = de2bi((1:2^N)-1,N);
c = rand(2^N,1);
format long g
result = sum(B.*c,1)
Now using a different code, can we reproduce that? One idea is to convert c into a multi-dimensional array. Then sum only the appropriate elements, permuting the elements of that array.
chat = reshape(c,repmat(2,1,N));
result2 = zeros(1,N);
for i = 1:N
chati = reshape(permute(chat,[i,setdiff(1:N,i)]),2,[]);
result2(i) = sum(chati(2,:));
end
result2
So I never computed B. I did a fair amount of work to perform the computations though. Is there a gain when N is large? It may start to gain when N grows moderately large.
1 commentaire
Matt J
le 14 Oct 2022
Modifié(e) : Matt J
le 14 Oct 2022
No need to permute:
N = 24; % not so small
c = rand(2^N,1);
tic
B = de2bi((1:2^N)-1,N);
result = sum(B.*c,1);
toc
tic;
chat = reshape(c,repmat(2,1,N));
result2 = zeros(1,N);
for i = 1:N
chati = reshape(permute(chat,[i,setdiff(1:N,i)]),2,[]);
result2(i) = sum(chati(2,:));
end
toc
tic;
chat = reshape(c,repmat(2,1,N));
inds0=repmat({':'},1,N);
result2 = zeros(1,N);
for i = 1:N
inds=inds0;
inds{i}=2;
result2(i) = sum(chat(inds{:}),'all');
end
toc
Voir également
Catégories
En savoir plus sur Performance and Memory dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!