How to manage NaNs in responses training a convolutional neural network?
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I am training a UNET for regression. I am facing the issue of managing the NaNs in the responses (reference) data. My input data is a 4-D matrix (48x48x9xN), while the reference is always a 4-D matrix (48x48xx1xN). A number of the reference images (i.e. some of the N 48x48 images) are partially filled, it means that some values are NaN.
When I start the trining process I get the following error message:
"Invalid training data. Responses must not contain NaNs."
Is there a way to manage NaNs? It is important to highlight that the input pixels corresponding to reference NaN pixel, are not NaN but have reliable values.
Thanks.
Leo Pio
0 commentaires
Réponses (1)
KSSV
le 17 Oct 2022
You can fill NaN's using either fillmissing, interp2. Also have a look on the fileexchange: https://in.mathworks.com/matlabcentral/fileexchange/15590-fillnans
2 commentaires
Voir également
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!