# How to solve an ODE with three equation that are dependent on each other

1 vue (au cours des 30 derniers jours)
Pipe le 19 Oct 2022
Modifié(e) : Torsten le 19 Oct 2022
I have these equations that are supposed to tell me how the concentration of C changes over time. I am trying to use ODE 45 but I keep getting error
v1=0.3;
k2 = 0.3; %constant
C = v1-dpdt; %ODE for network
dpdt = k2*C; %Rate of equation
for tspan = 0:100
dpdt = @(PEP,t) (k2*C*t)
[PEP, t] = ode45(dpdt,tspan,0)
end
##### 1 commentaireAfficher -1 commentaires plus anciensMasquer -1 commentaires plus anciens
Torsten le 19 Oct 2022
Modifié(e) : Torsten le 19 Oct 2022
Please write down the differential equation(s) you are trying to solve in a mathematical notation since your code doesn't make sense.

Connectez-vous pour commenter.

### Réponses (1)

Star Strider le 19 Oct 2022
Some of this is difficult to interpret.
My best guess at a solution —
v1=0.3;
k2 = 0.3; %constant
C = v1;
% C = v1-dpdt; %ODE for network
% dpdt = k2*C; %Rate of equation
tspan = 0:100;
dpdt = @(PEP,t) (k2*C*t);
[t,PEP] = ode45(dpdt,tspan,k2);
figure
plot(t,PEP)
grid
xlabel('t')
ylabel('PEP')
Make appropriate changes in case my guess is in error.
.
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

### Catégories

En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by