How to solve an ODE with three equation that are dependent on each other
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have these equations that are supposed to tell me how the concentration of C changes over time. I am trying to use ODE 45 but I keep getting error
v1=0.3;
k2 = 0.3; %constant
C = v1-dpdt; %ODE for network
dpdt = k2*C; %Rate of equation
for tspan = 0:100
dpdt = @(PEP,t) (k2*C*t)
[PEP, t] = ode45(dpdt,tspan,0)
end
1 commentaire
Réponses (1)
Star Strider
le 19 Oct 2022
Some of this is difficult to interpret.
My best guess at a solution —
v1=0.3;
k2 = 0.3; %constant
C = v1;
% C = v1-dpdt; %ODE for network
% dpdt = k2*C; %Rate of equation
tspan = 0:100;
dpdt = @(PEP,t) (k2*C*t);
[t,PEP] = ode45(dpdt,tspan,k2);
figure
plot(t,PEP)
grid
xlabel('t')
ylabel('PEP')
Make appropriate changes in case my guess is in error.
.
0 commentaires
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
