Non trivial solution to a linear system

4 vues (au cours des 30 derniers jours)
Serge El Asmar
Serge El Asmar le 27 Oct 2022
Commenté : Karim le 27 Oct 2022
Hello,
I am trying to solve a linear system of the form A*x=B with A = K-eigenfreq1(3)*M and B = [0 0 0 0 0]'
K and M are 5x5 matrices and eigenfreq1(3) is just a scalar.
However whenever I use the A\B command to solve the system I get the trivial solution x=[0 0 0 0 0]' and I am told that this solution is not unique. Is there a way to get the other, non trivial, solutions?
  4 commentaires
Serge El Asmar
Serge El Asmar le 27 Oct 2022
If you have encountered that before and can help it would be amazing thanks!
Karim
Karim le 27 Oct 2022
See below for an example. This way you obtain all the natural frequencies and the corresponding modes.
K = rand(5);
M = rand(5);
[ EigenModes , EigenFreq ] = eig( K , M )
EigenModes = 5×5
1.0000 -0.5408 0.3037 0.1309 0.1009 0.1474 -1.0000 -0.7636 -0.7115 -1.0000 -0.7752 -0.5870 -0.5500 -0.6974 0.0851 -0.8842 0.2302 1.0000 1.0000 0.2623 0.6343 0.0215 -0.5822 -0.2689 0.6139
EigenFreq = 5×5
-5.8058 0 0 0 0 0 1.5359 0 0 0 0 0 -0.4406 0 0 0 0 0 -0.0414 0 0 0 0 0 0.1681
EigenFreq = diag( EigenFreq )
EigenFreq = 5×1
-5.8058 1.5359 -0.4406 -0.0414 0.1681

Connectez-vous pour commenter.

Réponse acceptée

VBBV
VBBV le 27 Oct 2022
Modifié(e) : VBBV le 27 Oct 2022
syms omega2
K = rand(5);
M = rand(5);
eigF = 0.1; % scalar
eqn1 = det(K-omega2*M) == 0;
eigenfreq1=vpasolve(eqn1,omega2)
eigenfreq1 = 
eigenmodes1 = (K-eigF*M)\ones(5,1) %
eigenmodes1 = 5×1
0.2999 1.0135 -0.1678 1.7206 -0.3961
  1 commentaire
VBBV
VBBV le 27 Oct 2022
Modifié(e) : VBBV le 27 Oct 2022
Since input B vector are all zeros, non-trivial solution dont exist. If your input vector are all ones you can get non-trivial solution

Connectez-vous pour commenter.

Plus de réponses (1)

Torsten
Torsten le 27 Oct 2022
Modifié(e) : Torsten le 27 Oct 2022
However whenever I use the A\B command to solve the system I get the trivial solution x=[0 0 0 0 0]' and I am told that this solution is not unique. Is there a way to get the other, non trivial, solutions?
null(A) gives you a basis for the kernel of A.

Produits


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by