solve double differentiation with two limits
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
%% hello I am trying to solve the equation with double differentiation of M_z which is equal to w_x get the value of M_z(x) but could not solve it. Could you please help me to solve this equation. M_z(x= 0) = -150 and M_z(x= L) = 250 are given
clc;
close;
clear;
syms d_F ;
syms d_F_c;
syms dM_B;
%syms Theta_B;
syms x real;
syms u_mid;
syms u_c;
syms u_max;
syms a;
syms w_x;
syms M_z;
%syms n;
%Q = 2.5; %kip/ft
L = 30.; % ft
%a = 18; %assume maximum deflection at 15', 20'
E = 29000.*12^2; %ksi to kips/ft2
I = 1890./(12)^4; %ft^4
E_I = E.*I; %kip*ft^2;
%% deflection at mid of AB
%P = 1;
%R = 1;
%syms u_2;
%R = 1
w_x = @(x) -1*x/(L/3)*heaviside(x-L/3)*(1-heaviside(x-2*L/3));
w_x_1 = w_x(x);
eq1 = gradient(M_z(x),2) == -w_z(x);
soln1 = dsolve(eq1, M_z(0)==-150, M_z(L) == 250);
fplot(x, w_x(x), [0,L]);
0 commentaires
Réponse acceptée
VBBV
le 29 Oct 2022
Modifié(e) : VBBV
le 29 Oct 2022
clc;
close;
clear;
syms d_F ;
syms d_F_c;
syms dM_B;
%syms Theta_B;
syms x real;
syms u_mid;
syms u_c;
syms u_max;
syms a;
% syms w_x;
syms M_z(x);
%syms n;
%Q = 2.5; %kip/ft
L = 30.; % ft
%a = 18; %assume maximum deflection at 15', 20'
E = 29000.*12^2; %ksi to kips/ft2
I = 1890./(12)^4; %ft^4
E_I = E.*I; %kip*ft^2;
%% deflection at mid of AB
%P = 1;
%R = 1;
%syms u_2;
%R = 1
w_x = @(x) -1*x/(L/3)*heaviside(x-L/3)*(1-heaviside(x-2*L/3));
w_x_1 = w_x(x)
eq1 = diff(M_z(x),2) == -w_x_1
soln1 = dsolve(eq1, [M_z(0)==-150, M_z(L) == 250])
fplot(x, w_x(x), [0,L]); axis([0 30 -5 2])
3 commentaires
VBBV
le 29 Oct 2022
sol1 is for moment variable M_z(x) . please open a new question for your problem
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


