Solving a matrix equation?

26 vues (au cours des 30 derniers jours)
Matt
Matt le 20 Mar 2015
I'm trying to solve the following matrix equation using MATLAB:
AU + UB = C
A, B, and C are known matrices and I want to solve for the matrix U. A and B are square, symmetric, and tridiagonal. Does anyone have advice on how to use MATLAB to efficiently solve this system? Thank you for any help in advance!
  1 commentaire
Worku Fufa
Worku Fufa le 28 Sep 2021
40v+5i+0.5i2=0
85v+(i3+i2)4=0
i1=10+i2+i4

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 20 Mar 2015
Look at 5.1.10 under
for a solution.
Enter
help kron
to get information on how to form the Kronecker tensor product in MATLAB.
Best wishes
Torsten.
  1 commentaire
Matt
Matt le 20 Mar 2015
Thank you for your answer! While your solution works, I discovered that MATLAB has a straightforward command for solving this system - see my answer if interested.

Connectez-vous pour commenter.

Plus de réponses (3)

Matt
Matt le 20 Mar 2015
For anyone who may stumble upon this in the future, turns out my system is the Sylvester equation. Its solution has been implemented in MATLAB starting in version 2014a:

Pramod Palayangoda
Pramod Palayangoda le 23 Jan 2021
1. Consider the following system of equations.
2𝒙𝟏 + 𝟓𝒙𝟐 + 𝟓𝒙𝟑 = 𝟓
4𝒙𝟏 − 𝒙𝟐 + 𝟐𝒙𝟑 = −𝟔
−𝟐𝒙𝟏 + 𝟑𝒙𝟐 − 𝒙𝟑 = 𝟏𝟏
i) Form a matrix for the coefficients of the above system and name it as A.
ii) Find the determinant of A.
iii) Find the inverse of A.
iv) Form a matrix for the right hand values and name it as B
v) Solve the above system.

Karthikeyan S
Karthikeyan S le 20 Avr 2022
2𝒙𝟏 + 𝟓𝒙𝟐 + 𝟓𝒙𝟑 = 𝟓

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by