How to get ROC curve using SVM?
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have extracted the features of finger knuckles using LBP and now want to classify using SVM. I am using following code and I get values of F1 score , recall, percision, and accuracy. Now I also want to plot ROC curve. Plz help me which changes are required to get ROC for one-vs-all classicification using SVM. Feat file is attached.
clc
clear
close all
%%
Data = load ("Feat13.mat");
Features = Data.Feat (:,1:end-1);
Labels = Data.Feat (:,end);
% Features = Data.Feat (1:200,1:end-1); % for 1st 200 only
% Labels = Data.Feat (1:200,end);
% [m,n] = size(Features);
[m,n] = size(Data.Feat);
P = 0.50;
idx = randperm(m) ;
Training = Data.Feat(idx(1:round(P*m)),:);
Testing = Data.Feat(idx(round(P*m)+1:end),:);
Train_Features = Training(:,1:end-1);
Train_Labels = Training(:,end);
Test_Features = Testing(:,1:end-1);
Test_Labels = Testing(:,end);
rng(1); % For reproducibility
% SVMModel = fitcecoc(Train_Features,Train_Labels);
t = templateSVM('Standardize',true,'KernelFunction','linear');
SVMModel = fitcecoc(Train_Features,Train_Labels,'Learners',t);
error = resubLoss(SVMModel)
[Pred_TrainLabels,Pred_TrainScore] = predict(SVMModel,Train_Features);
[Pred_TestLabels,Pred_TestScore] = predict(SVMModel,Test_Features);
% ROC_data = roc_curve(Test_Labels,Pred_TestLabels)
% [Pred_WholeLabels,Pred_WholeScore] = predict(SVMModel,Features);
% ROC_data = roc_curve(Labels,Pred_wholeLabels)
% ROC_data = roc_curve(Labels,Pred_WholeLabels)
%
% [X,Y,T,AUC] = perfcurve(Labels,Pred_WholeScore,'5')
% plot(X,Y)
%% % For whole labels and scores
% [tpr,fpr,thresholds] = roc(Labels,Pred_WholeLabels);
% plotroc(Labels,Pred_WholeScore())
% %% For Test labels and scores only
% [tpr,fpr,thresholds] = roc(Labels,Pred_TestLabels);
% plotroc(Labels,Pred_TestScore())
% [c_matrixp,Result]= confusion.getMatrix(Test_Labels,Pred_TestLabels);
% [c_matrixp,Result]= confusion.getMatrix(Labels,Pred_WholeLabels);
fig = figure;
cm = confusionchart(Test_Labels,Pred_TestLabels,'RowSummary','row-normalized','ColumnSummary','column-normalized');
% cm = confusionchart(Labels,Pred_WholeLabels,'RowSummary','row-normalized','ColumnSummary','column-normalized');
cm.Title = 'Finger Creases Classification Using SVM';
cm.RowSummary = 'row-normalized';
cm.ColumnSummary = 'column-normalized';
[m, order] = confusionmat(Test_Labels,Pred_TestLabels);
Diagonal=diag(m);
sum_rows=sum(m,2);
Precision=Diagonal./sum_rows;
Overall_Precision=mean(Precision)
sum_col=sum(m,1);
recall=Diagonal./sum_col';
recall(isnan(recall))=0;
overall_recall=mean(recall)
F1_Score=2*((Overall_Precision*overall_recall)/(Overall_Precision+overall_recall))
accuracy = sum(Test_Labels == Pred_TestLabels,'all')/numel(Pred_TestLabels)
0 commentaires
Réponses (1)
Rohit
le 22 Fév 2023
You can compute a ROC curve and other performance curves by creating a rocmetrics object which support both binary and multiclass classification.
Refer to the below documentation links for further reference-
0 commentaires
Voir également
Catégories
En savoir plus sur Classification dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!