Linear indexing over a subset of dimensions
16 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Linear indexing over the last two dimensions of a three dimensional array seems to work:
A = zeros([3 5 5]);
aIdx = [1 7 13 19 25];
aVal = [1 2 3 ; 4 5 6 ; 7 8 9 ; 10 11 12 ; 13 14 15].';
A(:,aIdx) = aVal;
This puts the triplets of aVal into the diagonal locations of the [5 5] part of A. That is
>> A(:,2,2)
ans =
4
5
6
I want to do the same thing but with first two dimension of an array. That is something like:
B = zeros([5 5 3]);
bIdx = [1 7 13 19 25];
bVal = [1 2 3 ; 4 5 6 ; 7 8 9 ; 10 11 12 ; 13 14 15];
B(bIdx,:) = bVal;
But this does not work. A couple of ways that do work are:
B([ bIdx bIdx + 25 bIdx + 50]) = bVal;
and
bLogIdx = false([5 5]);
bLogIdx(bIdx) = true;
B(repmat(bLogIdx, [1 1 3])) = bVal;
Both of these give
>> squeeze(B(2,2,:))
ans =
4
5
6
Is there a more clever way to accomplish this? More generally, is there a way to linear index over a subset of dimensions. That is use linear indexing in the y1,y2 dimensions of A(x1,x2,y1,y2,x3,x4)?
1 commentaire
Stephen23
le 9 Nov 2022
Modifié(e) : Stephen23
le 10 Nov 2022
"Is there a more clever way to accomplish this?"
RESHAPE or PERMUTE
"More generally, is there a way to linear index over a subset of dimensions."
By definition trailing dimensions collapse into the last subscript index. As Loren Shure wrote: "Indexing with fewer indices than dimensions If the final dimension i<N, the right-hand dimensions collapse into the final dimension."
If you think about it, linear indexing is really just a side-effect of this. An earlier discussion on this:
Réponse acceptée
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur Matrix Indexing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!