Contour plot in Smith chart - how to do it?
25 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I got a set of measured load-pull (LP) data from an amplifier, which I'd like to plot as contours in the Smith chart (an example on the desired end result: http://www.mwrf.com/files/30/21651/fig_02.gif )
I've put out a .txt file with the LP measurements on my public DropBox if anyone want to have a go at it ( http://dl.dropbox.com/u/13366636/lp_data.txt )
I import the data from the *.txt file as following:
% Measured loads are inside |G| = [0.1,0.8], <G = [0 180]
A = importdata('lp_data.txt');
Gmag = A.data(:,2); % magnitude of load reflection coeff.
Gphase = A.data(:,3); % phase of load reflection coeff., degrees
Gamma = Gmag.*exp(1i*Gphase*pi/180); % complex load reflection coeff
Pout = A.data(:,5); % measured output power, dBm
Gain = A.data(:,6); % measured power gain, dB
PAE = A.data(:,8); % measured power added efficiency, %
DC2RF = A.data(:,9); % measured drain efficiency, %
But from here on I really don't know how to proceed to be able to plot the LP data as contours. I had a look at the second last example at http://www.mathworks.se/help/techdoc/creating_plots/f10-2524.html but my problem is what to do about the Z-matrix (or even maybe how to make the proper X and Y matrices as well?). I haven't made measurements at all possible complex loads, so I assume I must perform some kind of interpolation in order for this to work, but as mentioned, here I'm clueluess.
Anyone who got any suggestions for where to start?
Best regards, dm
0 commentaires
Réponse acceptée
Matt Tearle
le 18 Oct 2011
Not sure what your X, Y, and Z are, but I assume it's something like DC2RF (Z) as a function of Gmag and Gphase. In that case, something like this might work:
Greal = Gmag.*cosd(Gphase);
Gimag = Gmag.*sind(Gphase);
[X,Y] = meshgrid(linspace(min(Greal),max(Greal)),linspace(min(Gimag),max(Gimag)));
F = TriScatteredInterp(Greal,Gimag,DC2RF);
Z = F(X,Y);
h = polar([-pi pi], [0 1]);
delete(h)
hold on
contour(X,Y,Z,30)
2 commentaires
Mena Labib
le 12 Nov 2019
I'm working on visualizing EVM Load Pull data as well.
The issue i'm facing is that the polar plot underlaying the contour doesn't properly reflect VSWR circles (i.e VSWR1 is a dot on a smith chart, but an entire circle on the polar plot).
I was wondering if there was a way to plot these real and imag values on a smith chart, and overlay a contour?
Here's my code using the suggested method, and a corresponding plot (note how the inner circle is empty even though my data uses VSWR1)
Gmag = [1.18, 1.0, 1.16, 1.16, 1.1, 1.16, 1.16, 1.09, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.06, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.16, 1.16, 1.19, 1.19, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.18, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.18, 1.2, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]; % A.data(:,2); % magnitude of load reflection coeff.
Gphase = [13.18, 78.68, 12.84, 14.63, 20.07, 16.44, 16.72, 83.04, 44.97, 50.03, 55.04, 60.02, 64.98, 70.05, 75.02, 79.96, 84.94, 90.08, 95.0, 99.94, 104.97, 109.86, 114.87, 120.28, 124.78, 130.06, 135.01, 140.16, 145.05, 149.89, 99.42, 159.92, 165.03, 170.01, 174.66, 179.72, -175.08, -169.9, -165.17, -159.95, -154.75, -150.2, -144.83, -140.16, -134.74, -130.03, -125.24, -119.84, -114.99, -110.01, -105.0, -99.87, -95.13, -89.92, -85.05, -80.02, -74.87, -70.0, -64.98, -60.04, -54.98, -50.0, -45.02, -40.0, -35.01, -30.02, -25.0, -20.02, -14.99, 11.24, 11.87, 8.76, 8.65, 10.0, 14.99, 19.99, 24.99, 30.01, 34.98, 20.01, 44.97, 50.0, 54.99, 59.98, 65.02, 69.98, 74.95, 79.95, 85.06, 90.0, 95.01, 100.02, 105.13, 109.98, 115.1, 120.09, 124.95, 129.91, 134.92, 140.13, 145.11, 149.9, 155.03, 160.12, 165.22, 170.1, 175.18, -179.91, -175.15, -169.98, -164.86, -160.16, -154.81, -150.06, -144.84, -140.16, -135.02, -129.83, -125.15, -120.0, -114.9, -109.86, -104.82, -99.87, -94.93, -90.0, -85.08, -79.87, -75.04, -69.96, -64.91, -60.09, -55.04, -50.06, -45.05, -40.05, -34.95, -30.01, -24.96, -19.99, -14.97, 8.41, -4.98, -0.03, 5.01, 9.99, 14.99, 19.97, 25.04, 30.03, 34.96, 40.05, 45.0, 50.01, 55.05, 60.41, 64.91, 69.92, 75.09, 80.06, 84.91, 90.11, 94.97, 99.93, 104.96, 110.07, 115.01, 120.07, 124.75, 130.04, 135.03, 140.07, 144.82, 150.11, 155.05, 159.99, 164.97, 169.9, 174.97, -179.97, -174.95, -169.92, -164.91, -159.88, -154.88, -149.95, -145.09, -139.85, -135.05, -129.85, -124.7, -120.02, -115.0, -110.08, -104.89, -100.08, -94.99, -90.01, -84.87, -80.03, -74.99, -70.03, -64.91, -60.08, -54.93, -50.06, -44.98, -40.03, -35.05, -30.06, -25.05, -20.02, -15.04, -10.03, -4.99, -0.02, 4.99, 10.04, 15.05, 19.94, 25.02, 29.97, 35.01, 40.05, 44.93, 50.0, 54.97, 59.98, 65.04, 70.1, 75.16, 79.98, 84.96, 90.07, 95.0, 100.1, 105.05, 110.09, 114.9, 120.11, 124.85, 129.96, 135.13, 140.1, 145.13, 149.88, 155.16, 160.08, 165.07, 170.04, 175.06, -179.88, -174.83, -169.79, -165.2, -160.17, -155.18, -149.86, -145.02, -139.83, -135.03, -129.92, -124.88, -119.91, -115.06, -109.91, -104.87, -99.9, -95.08, -90.07, -85.11, -79.95, -74.89, -69.9, -64.98, -59.93, -55.0, -49.98, -45.05, -40.04, -35.08, -30.04, -24.99, -20.03, -14.96, -9.95, -5.06, 0.02, 4.98, 10.04, 14.95, 20.02, 25.05, 30.03, 34.99, 39.96, 44.95, 50.02, 54.97, 60.08, 64.95, 70.01, 74.94, 80.06, 84.89, 90.11, 94.93, 100.08, 105.08, 109.9, 115.1, 120.03, 125.1, 129.96, 134.87, 139.88, 144.98, 150.15, 155.12, 160.19, 164.88, 169.96, 175.06, 179.91, -174.89, -170.13, -165.03, -159.91, -154.82, -150.17, -144.84, -139.92, -135.04, -129.87, -125.13, -120.13, -114.9, -110.08, -105.02, -100.08, -95.02, -89.99, -85.03, -79.88, -75.08, -70.07, -64.95, -59.94, -55.01, -49.92, -44.93, -39.94, -35.02, -29.96, -24.96, -20.01, -15.03, -10.05, -5.03, -0.0, 5.02, 10.04, 14.93, 19.96, 25.08, 29.94, 35.07, 39.99, 45.04, 50.08, 54.96, 59.99, 64.92, 69.98, 74.9, 79.97, 84.95, 90.08, 95.09, 99.9, 105.03, 110.0, 115.06, 120.16, 125.05, 130.03, 135.11, 139.96, 144.89, 149.89, 154.98, 159.89, 165.17, 170.08, 175.02, -179.97, -174.95, -169.99, -165.07, -160.15, -154.89, -150.07, -144.95, -139.88, -134.86, -129.93, -125.08, -119.99, -114.99, -110.11, -104.96, -100.0, -95.12, -89.99, -84.94, -79.97, -75.06, -69.96, -65.0, -60.12, -55.06, -50.04, -44.97, -39.9, -35.09, -30.05, -25.01, -20.04, -14.99, -10.02, -4.94, 0.08, 5.03, 10.01, 15.03, 20.01, 25.06, 29.98, 34.99, 39.93, 44.97, 49.97, 54.93, 60.07, 65.08, 69.98, 74.97, 80.01, 84.95, 90.05, 94.98, 100.04, 105.09, 109.99, 114.98, 120.03, 125.14, 130.01, 134.98, 140.03, 145.16, 150.04, 154.98, 160.08, 164.86, 170.01, 175.16, -179.96, -175.08, -169.88, -165.09, -159.95, -154.84, -150.15, -144.83, -139.91, -135.04, -129.92, -124.9, -119.98, -115.16, -110.1, -104.86, -100.11, -94.83, -89.88, -84.98, -80.12, -75.05, -70.09, -64.97, -59.91, -54.91, -49.97, -44.99, -40.01, -35.01, -29.98, -24.94, -19.93, -14.98, -10.03, -4.94, -0.05, 4.92, 9.94, 14.99, 20.01, 25.06, 29.99, 34.98, 40.08, 45.08, 49.99, 55.05, 60.05, 64.93, 70.09, 75.0, 80.03, 84.95, 90.03, 94.97, 99.99, 105.07, 109.94, 114.87, 119.87, 124.89, 129.97, 134.85, 140.12, 145.15, 149.93, 155.1, 160.07, 165.11, 170.14, 174.84, 179.95, -174.9, -170.17, -165.12, -160.09, -155.09, -150.16, -144.95, -140.13, -135.04, -130.04, -125.14, -120.02, -115.02, -110.1, -105.01, -100.07, -94.91, -90.08, -84.99, -79.98, -75.04, -69.93, -64.87, -59.88, -54.9, -50.04, -44.89, -39.96, -34.97, -29.94, -25.08, -20.02, -15.0, -9.95, -5.07, 0.03, 4.98, 9.97, 15.0, 19.99, 25.0, 30.07, 35.01, 40.02, 44.93, 49.94, 55.08, 59.93, 65.08, 70.08, 74.95, 80.01, 84.95, 90.03, 94.96, 99.96, 105.03, 110.14, 115.04, 120.0, 124.96, 129.99, 135.09, 139.97, 144.93, 149.96, 155.05, 159.9, 164.86, 170.16, 175.13, -179.86, -175.15, -170.13, -165.17, -159.88, -154.96, -150.11, -144.99, -139.93, -134.93, -130.02, -124.89, -119.9, -114.99, -109.87, -104.91, -100.06, -94.98, -89.94, -84.97, -80.03, -74.91, -70.11, -65.11, -59.91, -54.99, -49.96, -45.1, -39.96, -34.97, -29.93, -25.05, -19.97, -15.07, -9.94, -4.94, 0.08, 4.96, 10.07, 15.04, 19.97, 25.1, 30.08, 34.91, 40.04, 45.03, 49.92, 54.92, 60.06, 65.06, 70.11, 74.99, 80.03, 84.99, 90.06, 94.98, 99.98, 105.03, 110.13, 115.0, 119.91, 125.14, 130.11, 134.86, 139.98, 144.86, 149.85, 154.89, 160.01, 164.92, 170.16, 175.08, -179.98, -174.99, -170.04, -165.13, -159.91, -155.07, -149.97, -144.93, -139.95, -135.03, -129.89, -124.87, -119.96, -115.12, -110.09, -104.92, -99.86, -95.13, -89.9, -84.99, -80.12, -75.05, -70.05, -65.09, -59.9, -55.03, -50.05, -44.98, -40.09, -35.09, -30.07, -24.98, -20.06, -14.9, -10.09, -4.99]; % phase of load reflection coeff., degrees
EVM = [-38.4051, -38.1134, -38.355, -38.3263, -38.2224, -38.3309, -38.3149, -37.9574, -38.278, -38.2608, -38.2315, -38.2056, -38.1556, -38.0535, -37.9942, -37.9187, -37.8822, -37.8648, -37.8539, -37.8298, -37.7994, -37.7208, -37.755, -37.729, -37.7232, -37.7409, -37.7202, -37.6981, -37.6586, -37.6379, -37.7907, -37.6779, -37.6323, -37.6648, -37.6531, -37.6713, -37.6802, -37.7052, -37.7578, -37.8317, -37.8259, -37.8114, -37.8968, -37.9254, -37.974, -38.0336, -38.0665, -38.1079, -38.1336, -38.1613, -38.1823, -38.2185, -38.2856, -38.3487, -38.3557, -38.3954, -38.3843, -38.4437, -38.2693, -38.3124, -38.3271, -38.3513, -38.3359, -38.362, -38.3941, -38.3563, -38.3746, -38.3624, -38.3627, -38.3383, -38.3273, -38.4069, -38.452, -38.391, -38.3582, -38.4503, -38.4324, -38.3821, -38.3678, -38.301, -38.2737, -38.2078, -38.0747, -37.9603, -37.8644, -37.7504, -37.719, -37.6511, -37.6077, -37.5448, -37.4814, -37.448, -37.4185, -37.3624, -37.2848, -37.2474, -37.1796, -37.1483, -37.161, -37.1424, -37.1881, -37.1524, -37.1257, -37.1371, -37.1554, -37.1386, -37.1828, -37.2348, -37.232, -37.325, -37.3198, -37.3954, -37.472, -37.4969, -37.5833, -37.6132, -37.7443, -37.8164, -37.883, -37.9281, -37.9853, -38.115, -38.2355, -38.272, -38.2989, -38.3849, -38.4089, -38.5015, -38.5942, -38.6376, -38.6928, -38.6969, -38.7362, -38.7265, -38.8113, -38.6519, -38.656, -38.7967, -38.7928, -38.7978, -38.7152, -38.4262, -38.5853, -38.7598, -38.681, -38.6369, -38.5674, -38.5085, -38.437, -38.3364, -38.308, -38.2024, -38.0524, -37.8991, -37.8064, -37.7196, -37.6197, -37.5059, -37.4245, -37.3145, -37.4754, -37.3531, -37.2926, -37.1981, -37.1088, -37.0101, -36.9557, -36.892, -36.8387, -36.8611, -36.7916, -36.7695, -36.7369, -36.7368, -36.7556, -36.68, -36.7318, -36.7396, -36.7792, -36.8154, -36.8577, -36.9127, -37.0843, -37.1491, -37.2449, -37.297, -37.4034, -37.5307, -37.6244, -37.7371, -37.8205, -37.8964, -37.8005, -37.9368, -38.0677, -38.1649, -38.2884, -38.3965, -38.5003, -38.6042, -38.6095, -38.7152, -38.7235, -38.8295, -38.9127, -38.9336, -38.946, -39.0022, -39.032, -39.0462, -38.9798, -38.9851, -38.902, -38.8947, -38.8261, -38.8877, -38.803, -38.7031, -38.5904, -38.4916, -38.274, -38.1798, -38.0354, -37.9105, -38.0084, -37.9076, -37.7954, -37.6043, -37.5046, -37.416, -37.2582, -37.1408, -36.9959, -36.868, -36.7131, -36.6188, -36.571, -36.4606, -36.3642, -36.3157, -36.5066, -36.4439, -36.3851, -36.3422, -36.2772, -36.2973, -36.3016, -36.3023, -36.3127, -36.3707, -36.3935, -36.508, -36.5363, -36.6062, -36.6827, -36.7854, -36.8835, -37.0056, -37.1438, -37.2408, -37.1466, -37.2968, -37.4983, -37.6396, -37.783, -37.9294, -38.0643, -38.2309, -38.355, -38.505, -38.5939, -38.752, -38.8411, -38.7602, -38.8313, -38.9392, -38.9882, -39.0258, -39.0821, -39.0731, -39.0763, -39.0963, -39.0802, -39.0988, -39.04, -39.0098, -38.9575, -39.0037, -38.9056, -38.7832, -38.6536, -38.5301, -38.3817, -38.2346, -38.05, -37.8504, -37.7359, -37.547, -37.4161, -37.2221, -37.0722, -36.8726, -36.7257, -36.8489, -36.7024, -36.5591, -36.4603, -36.3358, -36.2143, -36.0778, -35.9588, -35.8441, -35.7917, -35.7538, -35.6916, -35.6615, -35.8852, -35.8819, -35.8831, -35.9429, -35.9435, -36.0165, -35.7564, -35.843, -35.9323, -36.0039, -36.1058, -36.2527, -36.3694, -36.5359, -36.6776, -36.8266, -36.9868, -37.1649, -37.2788, -37.4931, -37.7148, -37.8284, -37.9945, -38.1682, -38.3912, -38.3355, -38.4846, -38.6545, -38.801, -38.9048, -38.9998, -39.1538, -39.1546, -39.2793, -39.2881, -39.3179, -39.3515, -39.3789, -39.3469, -39.2909, -39.2532, -39.2125, -39.1185, -38.7676, -38.6445, -38.5307, -38.4127, -38.2517, -38.0659, -37.8854, -37.9914, -37.7717, -37.5859, -37.3495, -37.1883, -37.0157, -36.8398, -36.6747, -36.4901, -36.3033, -36.1668, -36.31, -36.1249, -35.9766, -35.8798, -35.6446, -35.5815, -35.5293, -35.3659, -35.3475, -35.3128, -35.2187, -35.2323, -35.1898, -35.205, -35.2015, -35.2118, -35.2352, -35.2996, -35.3898, -35.5183, -35.5893, -35.7687, -35.8567, -36.0515, -36.2103, -36.3774, -36.5881, -36.7329, -36.9508, -37.1042, -37.3089, -37.5175, -37.5272, -37.7395, -37.9789, -38.1881, -38.3895, -38.5442, -38.6909, -38.8327, -38.9909, -39.1453, -39.2218, -39.3222, -39.1621, -39.2343, -39.2591, -39.2403, -39.2691, -39.2107, -39.1571, -39.0887, -39.0759, -38.9248, -38.7508, -38.6387, -38.4571, -38.2916, -38.1544, -37.9174, -37.761, -37.4666, -37.2757, -37.0649, -36.8959, -36.9747, -36.7798, -36.589, -36.4391, -36.1609, -36.046, -35.847, -35.7066, -35.5329, -35.6906, -35.4576, -35.3471, -35.2178, -35.0921, -34.9537, -34.9298, -34.8249, -34.7449, -34.6821, -34.6776, -34.6772, -34.6928, -34.75, -34.8299, -34.8943, -34.9456, -35.0699, -35.2691, -35.3209, -35.5002, -35.6929, -35.8517, -36.0581, -36.3144, -36.5061, -36.6922, -36.941, -37.1787, -37.1655, -37.3878, -37.5921, -37.7779, -38.0572, -38.344, -38.5043, -38.738, -38.8945, -38.8177, -38.9489, -39.0708, -39.2085, -39.1779, -39.2755, -39.2703, -39.3354, -39.2857, -39.2541, -39.2052, -39.1141, -38.9845, -38.8833, -38.3128, -38.1104, -38.3522, -38.1545, -37.9732, -37.7625, -37.571, -37.3108, -37.0835, -36.8583, -36.6434, -36.4698, -36.5529, -36.2726, -36.1112, -35.8806, -35.6851, -35.5117, -35.3126, -35.0843, -34.8903, -35.0656, -34.8894, -34.7453, -34.6134, -34.5054, -34.3697, -34.2296, -34.2413, -34.1808, -34.1716, -34.4901, -34.4676, -34.5327, -34.5919, -34.6165, -34.744, -34.8944, -34.746, -34.9025, -35.1025, -35.2586, -35.4608, -35.7164, -35.9477, -36.1953, -36.4198, -36.6625, -36.947, -36.9646, -37.2592, -37.4883, -37.7505, -38.0851, -38.2558, -38.5417, -38.471, -38.6606, -38.8247, -39.0421, -39.1508, -39.1867, -39.2153, -39.2642, -39.3414, -39.3271, -39.3487, -39.2845, -39.1749, -38.7354, -38.5888, -38.5256, -38.0951, -37.9499, -37.7192, -37.5273, -37.3928, -37.5216, -37.3538, -37.1348, -36.7985, -36.6029, -36.3225, -36.1061, -35.902, -35.6788, -35.7856, -35.5399, -35.3041, -35.1122, -34.8601, -34.635, -34.7791, -34.5713, -34.4202, -34.2568, -34.0535, -33.9853, -33.912, -33.8052, -33.7502, -34.0063, -33.7955, -33.9652, -33.8692, -33.902, -34.0025, -34.0915, -34.1541, -34.2594, -34.4584, -34.6829, -34.5486, -34.79, -35.1194, -35.3928, -35.6164, -35.907, -36.1439, -36.4151, -36.7488, -36.7936, -37.0644, -37.3356, -37.6018, -37.8645, -38.1257, -38.179, -38.399, -38.5853, -38.8155, -38.9449, -39.0495, -39.1665, -38.9607, -38.9389, -38.9113, -38.8793, -38.8171, -38.8002, -38.7015, -38.5746, -38.4495, -38.2939, -37.8623, -37.6597, -37.4221, -37.2169, -37.0672, -36.8069, -36.6087, -36.7351, -36.4817, -36.2337, -36.0466, -35.792, -35.5211, -35.2782, -35.3605, -35.1163, -34.8546, -34.6045, -34.3675, -34.1527, -34.2363, -34.12, -33.8836, -33.7401, -33.5624, -33.4635, -33.2474, -33.1066, -33.4036, -33.3237, -33.2973, -33.2574, -33.3381, -33.3453, -33.4746, -33.5417, -33.6937, -33.8426, -34.0329, -34.1837, -34.372, -34.2864, -34.6102, -34.8972, -35.2161, -35.5671, -35.8944, -36.1583, -36.475, -36.4818, -36.8029, -37.1309, -37.3971, -37.6959, -37.9752, -37.9865, -38.2816, -38.4698, -38.6807, -38.82, -38.9049, -38.6991, -38.7356, -38.7473, -38.7071, -38.6845, -38.6045, -38.5745, -38.4227, -38.2886, -38.1656, -37.9956];
Greal = Gmag.*cosd(Gphase);
Gimag = Gmag.*sind(Gphase);
[X,Y] = meshgrid(linspace(min(Greal),max(Greal)),linspace(min(Gimag),max(Gimag)));
F = TriScatteredInterp(Greal',Gimag',EVM');
Z = F(X,Y);
h = polar([-pi pi], [2 3]);
delete(h)
hold on
contour(X,Y,Z,719)
![EVMcontour.png](https://www.mathworks.com/matlabcentral/answers/uploaded_files/247841/EVMcontour.png)
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Detection and Tracking Statistics dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!