using Neural Network without toolbox
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have to write a code to model Neural Network. I write it with sigmoid function, back propogation, and gradient descent method.
My problem is that I can not insert input higher than 1.
This is my code:
X = (0:0.01:1.5);
X = X';
LX = length(X);
B_size = 1;
NO_B = (LX / B_size);
Y_d = X.^2;
Width = 20;
H = zeros (Width,1);
H_f = zeros (Width,1);
Y = zeros(LX,1);
Y_f = zeros(LX,1);
W1 = rand (Width,B_size);
W2 = rand (B_size,Width);
b1 = 1 ;
b2 = 1 ;
E_total = 1;
Eta = 0.1;
itt = 0;
epoch = 1500;
for e = 1 : epoch
for i = 1 : NO_B
itt = itt + 1;
XX = X( (B_size * (i-1)) +1 : (i*B_size) );
YY_d = Y_d( (B_size * (i-1)) +1 : (i*B_size) );
H = W1*XX + b1;
H_f = SIG(H);
Y = W2*H_f + b2;
Y_f = SIG(Y);
E_total = sum ( 0.5 * (( YY_d - Y_f ).^2)) ;
E(itt) = E_total;
ITT(itt) = itt;
delta = YY_d - Y_f ;
dY = Y_f.*(1-Y_f) ;
dH = H_f.*(1-H_f) ;
pd2 = (delta.*dY) * H_f' ;
pd1 = (XX *((delta.*dY)' * W2).* dH')' ;
W2 = W2 + Eta*pd2;
W1 = W1 + Eta*pd1;
YY_f ( (B_size * (i-1)) +1 : (i*B_size) )= Y_f;
end
end
plot(X,YY_f,'r*',X,Y_d,'b:','LineWidth',2);
function [alpha_f] = SIG(alpha)
%SIGMOID FUNCTION
alpha_f = 1 ./ (1 + ((exp(1)) .^ (-alpha)));
end
2 commentaires
Walter Roberson
le 2 Déc 2022
It is not clear to me which is the input that you cannot make larger than 1. Also you did not indicate what happens when you try to do that.
Réponses (0)
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!