I am trying to code a solution to blasius eq using Runge kutta 4, help please.
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
clear all;
clc;
% 3 First order ODE´S from Blasius Eq
% dF/deta = G
% dG/deta = H
% dH/deta = -0.5*F*H
fF=@(eta,G) G;
fG=@(eta,H) H;
fH=@(eta,F,H) -0.5*F*H;
%initial conditions
F0 = 0;
G0 = 0;
H0 = 0; %Inital Guess for H0
% Step size and Eta max
h=0.0001;
eta=10;
N=ceil(eta/h);
%Update loop
for i=1:N
eta(i+1)=eta(i)+h;
% Runge-Kutta 4
k1F=fF(eta(i) ,F(i) ,G(i) ,H(i));
k1G=fG(eta(i) ,F(i) ,G(i) ,H(i));
k1H=fH(eta(i) ,F(i) ,G(i) ,H(i));
k2F=fF(eta(i)+h/2,F(i)+h/2*k1F,G(i)+h/2*k1G,H(i)+h/2*k1H);
k2G=fG(eta(i)+h/2,F(i)+h/2*k1F,G(i)+h/2*k1G,H(i)+h/2*k1H);
k2H=fH(eta(i)+h/2,F(i)+h/2*k1F,G(i)+h/2*k1G,H(i)+h/2*k1H);
k3F=fF(eta(i)+h/2,F(i)+h/2*k2F,G(i)+h/2*k2G,H(i)+h/2*k2H);
k3G=fG(eta(i)+h/2,F(i)+h/2*k2F,G(i)+h/2*k2G,H(i)+h/2*k2H);
k3H=fH(eta(i)+h/2,F(i)+h/2*k2F,G(i)+h/2*k2G,H(i)+h/2*k2H);
k4F=fF(eta(i)+h ,F(i)+h *k3F,G(i)+h *k3G,H(i)+h *k3H);
k4G=fG(eta(i)+h ,F(i)+h *k3F,G(i)+h *k3G,H(i)+h *k3H);
k4H=fH(eta(i)+h ,F(i)+h *k3F,G(i)+h *k3G,H(i)+h *k3H);
F(i+1)=F(i)+(h/6)*(k1F + 2*k2F + 2*k3F + k4F);
G(i+1)=G(i)+(h/6)*(k1G + 2*k2G + 2*k1G + k4G);
H(i+1)=H(i)+(h/6)*(k1G + 2*k2G + 2*k1G + k4G);
end
%Plot solution
figure(1); clf(1)
plot(eta,G)
0 commentaires
Réponses (2)
Torsten
le 3 Déc 2022
clear all;
clc;
% 3 First order ODE´S from Blasius Eq
% dF/deta = G
% dG/deta = H
% dH/deta = -0.5*F*H
fF=@(eta,F,G,H) G;
fG=@(eta,F,G,H) H;
fH=@(eta,F,G,H) -0.5*F*H;
%initial conditions
F0 = 0;
G0 = 0;
H0 = 0; %Inital Guess for H0
F(1) = F0;
G(1) = G0;
H(1) = H0;
% Step size and Eta max
h=0.0001;
eta=10;
N=ceil(eta/h);
%Update loop
for i=1:N
eta(i+1)=eta(i)+h;
% Runge-Kutta 4
k1F=fF(eta(i) ,F(i) ,G(i) ,H(i));
k1G=fG(eta(i) ,F(i) ,G(i) ,H(i));
k1H=fH(eta(i) ,F(i) ,G(i) ,H(i));
k2F=fF(eta(i)+h/2,F(i)+h/2*k1F,G(i)+h/2*k1G,H(i)+h/2*k1H);
k2G=fG(eta(i)+h/2,F(i)+h/2*k1F,G(i)+h/2*k1G,H(i)+h/2*k1H);
k2H=fH(eta(i)+h/2,F(i)+h/2*k1F,G(i)+h/2*k1G,H(i)+h/2*k1H);
k3F=fF(eta(i)+h/2,F(i)+h/2*k2F,G(i)+h/2*k2G,H(i)+h/2*k2H);
k3G=fG(eta(i)+h/2,F(i)+h/2*k2F,G(i)+h/2*k2G,H(i)+h/2*k2H);
k3H=fH(eta(i)+h/2,F(i)+h/2*k2F,G(i)+h/2*k2G,H(i)+h/2*k2H);
k4F=fF(eta(i)+h ,F(i)+h *k3F,G(i)+h *k3G,H(i)+h *k3H);
k4G=fG(eta(i)+h ,F(i)+h *k3F,G(i)+h *k3G,H(i)+h *k3H);
k4H=fH(eta(i)+h ,F(i)+h *k3F,G(i)+h *k3G,H(i)+h *k3H);
F(i+1)=F(i)+(h/6)*(k1F + 2*k2F + 2*k3F + k4F);
G(i+1)=G(i)+(h/6)*(k1G + 2*k2G + 2*k3G + k4G);
H(i+1)=H(i)+(h/6)*(k1H + 2*k2H + 2*k3H + k4H);
end
%Plot solution
figure(1); clf(1)
plot(eta,G)
0 commentaires
VBBV
le 9 Sep 2024
@Guillermo, The anonymous functions, F ,G, H defined for the blasius flow need to applied in the same manner when RK4 method is implemented
clear all;
clc;
% 3 First order ODE´S from Blasius Eq
% dF/deta = G
% dG/deta = H
% dH/deta = -0.5*F*H
%initial conditions
F(1) = 0.01;
G(1) = 0.01;
H(1) = 0.1; %Inital Guess for H0
fF=@(eta,G) G;
fG=@(eta,H) H;
fH=@(eta,F,H) -0.5*F*H;
% Step size and Eta max
h=0.0001;
eta=10;
N=ceil(eta/h);
%Update loop
for i=1:N
eta(i+1)=eta(i)+h;
% Runge-Kutta 4
k1F=fF(eta(i),G(i));
k1G=fG(eta(i),H(i));
k1H=fH(eta(i),F(i),H(i));
k2F=fF(eta(i)+h/2,G(i)+h/2*k1G);
k2G=fG(eta(i)+h/2,H(i)+h/2*k1H);
k2H=fH(eta(i)+h/2,F(i)+h/2*k1F,H(i)+h/2*k1H);
k3F=fF(eta(i)+h/2,G(i)+h/2*k2G);
k3G=fG(eta(i)+h/2,H(i)+h/2*k2H);
k3H=fH(eta(i)+h/2,F(i)+h/2*k2F,H(i)+h/2*k2H);
k4F=fF(eta(i)+h,G(i)+h*k3G);
k4G=fG(eta(i)+h,H(i)+h*k3H);
k4H=fH(eta(i)+h,F(i)+h*k3F,H(i)+h*k3H);
F(i+1)=F(i)+(h/6)*(k1F + 2*k2F + 2*k3F + k4F);
G(i+1)=G(i)+(h/6)*(k1G + 2*k2G + 2*k1G + k4G);
H(i+1)=H(i)+(h/6)*(k1H + 2*k2H + 2*k1H + k4H);
end
%Plot solution
hold on
subplot(311);plot(eta,F); subplot(312); plot(eta,G); subplot(313);plot(eta,H);
0 commentaires
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!