I want to write a script that reads an input text file that specifies the parameters and then uses them to solve an integral

2 vues (au cours des 30 derniers jours)
I want to write a script that reads an input text file that specifies the parameters:
a:1
b:2
c:3
d:4
x0:1
y0:1
tf:25.
Then integrate a system of equations given the parameters read from the input text file. Sytem should be integrated from t=0 to t=tf. After plot x(t) and y(t) in a single graph.
This is what I did. It gives me errors. Kindly tell me what i am doing wrong and how to solve the question. Thanks.
[q,w] = readvars('variables.txt');
a = w(1);
b = w(2);
c = w(3);
d = w(4);
x0 = w(5);
y0 = w(6);
tf = w(7);
t = 0;
x = linspace(t,tf,25);
fx = @(x,y) a*x-b*x*y;
fy = @(y,x) c*x*y-d*y;
x = linspace(t,tf,25);
for i = 1:length(x)
fx(i)= integral(@(x)(fx(x,y)),t,x(i));
end
y = linspace(t,tf,25);
for k = 1:length(y)
fy(k)= integral(@(y)(fy(y,x)),t,y(k));
end
figure (1)
plot(fx)
plot(fy)
  3 commentaires
Gideon Sarpong
Gideon Sarpong le 14 Déc 2022
I improved the code to this and i do not get errors but shows this plot.
[q,w] = readvars('variables.txt');
a = w(1);
b = w(2);
c = w(3);
d = w(4);
x0 = w(5);
y0 = w(6);
tf = w(7);
t = 0;
a = w(1);
b = w(2);
y = 0.5;
fx = @(x) a*x-b*x*y;
format long
fx = integral(fx,t,tf,'RelTol',1e-8,'AbsTol',1e-13,'ArrayValued',true);
c = w(3);
d = w(4);
x = 4/3;
fy = @(y) c*x*y-d*y;
format long
fy = integral(fy,t,tf,'RelTol',1e-8,'AbsTol',1e-13,'ArrayValued',true);
figure (1)
plot(fx,'*')
hold on
plot(fy)
Torsten
Torsten le 14 Déc 2022
I can only repeat: you can't use "integral" to solve differential equations that depend in the dependent variable.
You must use one of the ode integrators or try "dsolve".

Connectez-vous pour commenter.

Réponse acceptée

Fabio Freschi
Fabio Freschi le 16 Déc 2022
As suggested by @Torsten your problem is a system of first order ODEs and you must use a ODE integrator. Try this
clear variables, close all
% your params (you can instead load here your file)
a = 1;
b = 2;
c = 3;
d = 4;
x0 = 1;
y0 = 1;
tf = 25;
% define the system of ODE as anonymous function.
% The vector variable is here X, with X(1) = x, X(2) = y
odeFun = @(t,X)[a*X(1)-b*X(1)*X(2); c*X(1)*X(2)-d*X(2)];
% initial value
X0 = [x0; y0];
% time interval
tSpan = [0 tf];
% solution with ODE45
[t,X] = ode45(odeFun,tSpan,X0);
figure
plot(t,X)
xlabel('time');
legend('x','y')

Plus de réponses (0)

Catégories

En savoir plus sur Stability Analysis dans Help Center et File Exchange

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by