Solve a nonlinear equation with constrains

1 vue (au cours des 30 derniers jours)
Miraboreasu
Miraboreasu le 15 Déc 2022
Modifié(e) : Torsten le 16 Déc 2022
Hello,
clear
p0=1000e6;
t0 = 1e-6;
td = 1e-6;
t = t0 + td;
c = 5e6;
a = @(r)log(r)./(t0*(r-1.0));
b = @(r)a(r).*r;
func= @(r) p0*((exp(-a*t) - exp(-b*t))/(exp(-a*t0) - exp(-b*t0)))-c;
r=1.5;
roots = fzero(func,r)
my equation is the func.
where a and b are,
  1 commentaire
Bora Eryilmaz
Bora Eryilmaz le 15 Déc 2022
Modifié(e) : Bora Eryilmaz le 15 Déc 2022
Your function "p(t)" (func in your code) is not a function of time since you are assigning a fixed scalar value to "t" in your code. So, func() is a function of r, with a fixed "t". So what you are really solving here is p(r) = 0 given fixed values for t, t0, a, b, c.
You will need to reformulate your problem.

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 15 Déc 2022
p0 = 1000e6;
t0 = 1e-6;
td = 1e-6;
t = t0 + td;
c = 7.5e8;
a = @(r)log(r)./(t0*(r-1.0));
b = @(r)a(r).*r;
func= @(r) p0*((exp(-a(r)*t) - exp(-b(r)*t))./(exp(-a(r)*t0) - exp(-b(r)*t0))) - c;
r = 0.001:0.1:10;
plot(r,func(r))
root1 = fzero(func,[0.001 0.75])
root1 = 0.5000
root2 = fzero(func,[1.1 2.5])
root2 = 2.0000
  2 commentaires
Miraboreasu
Miraboreasu le 15 Déc 2022
Thanks, but if I keep c=5e6, it won't work
Torsten
Torsten le 15 Déc 2022
Modifié(e) : Torsten le 16 Déc 2022
Yes, because no roots exist. Plot the function, and you will see that it does not cross the r-axis.
Note for functions that only depend on one variable: First plot, then solve.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange

Produits


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by