
Finding the first intersection point between 2 lines
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Fabian
le 22 Déc 2022
Réponse apportée : Mathieu NOE
le 23 Déc 2022
Hello all,
I need to find the time constant for which I plotted a line at y = 63% of the maximum value (y_max)
The other line comes from a Simulink model in which I can switch between different parameters, the output (y) differs every time (the line isn't plotted from a function). I'm using the following code which uses the 'interp1' function:
y_tau = 0.63*y_max;
[y,idx] = unique(y);
t = t(idx);
t_constant = interp1(y,x,y_max)
However, this always gives the second intersection point in the graph (see picture below). In this particular case:
t_constant = 190.2194
. How can I get the first intersection point using this code or any other method? Thank you in advance.
0 commentaires
Réponse acceptée
Mathieu NOE
le 23 Déc 2022
hello
try this
code is fairly simple to use as you only have to specify the y threshold value
threshold = 0.63*max(y); % 63% of peak amplitude

% dummy data
n = 1000;
x = 10*(0:n-1)/n;
y = 1+square(x);
[B,A] = butter(1,0.004);
y = filter(B,A,y);
% main code
threshold = 0.63*max(y); % 63% of peak amplitude
t0_pos1 = find_zc(x,y,threshold);
t0_pos1 = t0_pos1(1); % keep only first crossing point
figure(1)
plot(x,y,'b',x,threshold*ones(size(x)),'k--',t0_pos1,threshold*ones(size(t0_pos1)),'*r','linewidth',2,'markersize',12);grid on
legend('signal','threshold','signal positive slope crossing points');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Zx] = find_zc(x,y,threshold)
% positive slope "zero" crossing detection, using linear interpolation
y = y - threshold;
zci = @(data) find(diff(sign(data))>0); %define function: returns indices of +ZCs
ix=zci(y); %find indices of + zero crossings of x
ZeroX = @(x0,y0,x1,y1) x0 - (y0.*(x0 - x1))./(y0 - y1); % Interpolated x value for Zero-Crossing
Zx = ZeroX(x(ix),y(ix),x(ix+1),y(ix+1));
end
0 commentaires
Plus de réponses (2)
Torsten
le 22 Déc 2022
If you have the t-y values as vectors available, you can use this code to determine the t-values where y-y_tau=0:
y_tau = 0.63*y_max;
y = y - y_tau;
i = find(y(1:end-1).*y(2:end) <= 0)
t_root = t(i)-y(i).*(t(i+1)-t(i))./(y(i+1)-y(i))
0 commentaires
Voir également
Catégories
En savoir plus sur Specialized Power Systems dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!