Difference Between Built-in Periodogram and Self-Calculated Periodogram
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
tinkyminky93
le 24 Déc 2022
Commenté : Sulaymon Eshkabilov
le 24 Déc 2022
Hello,
I have the following code block. Im just trying to calculate the periodogram of the signal 'x' with built-in periodogram function and without built-in periodogram function. I got the same pattern but the amplitudes are not equal. What am I missing there? Thank you for your help.
clc
clear
close all
j = sqrt(-1);
n = 1:1:256;
noise_mean = 0;
noise_deviation = sqrt(5);
noise = noise_deviation.*randn(1,256) + noise_mean;
x = 20*exp(j*2*pi*(0.15)*n) + 30*exp(j*2*pi*(0.20)*n) + noise;
N = length(x); % N point FFT
for k = 1:N
Sx(k) = 0;
for n = 1:N
Sx(k) = Sx(k)+x(n)*exp(-1i*2*pi*(k-1)*(n-1)/N);
end
end
Sx = (1/N)*abs(Sx).^2;
figure
plot(10*log10(Sx)) , title('Periodogram without Built-in');
figure
plot(10*log10(periodogram(x))), title('Built-in Periodogram');
0 commentaires
Réponse acceptée
Sulaymon Eshkabilov
le 24 Déc 2022
The only thing that you are missing that you ahve not specified FFT window size when you've employed MATLAB's builtin fcn:
clc
clear
close all
j = sqrt(-1);
n = 1:1:256;
noise_mean = 0;
noise_deviation = sqrt(5);
noise = noise_deviation.*randn(1,256) + noise_mean;
x = 20*exp(j*2*pi*(0.15)*n) + 30*exp(j*2*pi*(0.20)*n) + noise;
N = length(x); % N point FFT
for k = 1:N
Sx(k) = 0;
for n = 1:N
Sx(k) = Sx(k)+x(n)*exp(-1i*2*pi*(k-1)*(n-1)/(N));
end
end
Sx = (1/N)*(abs(Sx).^2);
figure
plot(10*log10(Sx)) , title('Periodogram without Built-in');
figure
plot(10*log10(periodogram(x, [], N, 1))), title('Built-in Periodogram'); % FFT Window size is specified
figure
plot(10*log10(Sx), 'b-', 'linewidth', 2.5, 'DisplayName', 'Manual Calc') , hold on
plot(10*log10(periodogram(x,[], N, 1)), 'DisplayName', 'Built-in Periodigram'), title('Built-in Periodogram vs. Manual Calc');
legend('toggle'), grid on
2 commentaires
Sulaymon Eshkabilov
le 24 Déc 2022
It is quite straightforward. N is Discrete Fourier Transform window size (also called resolution), which you set equal to the length of your generated signal (N = length(x)), and 1 corresponds to the sampling frequency. In your example, Fs is 1, becuase n = 1:1:256. [] is coming from the syntax of periodigram() fcn becuase of the other chosen parameters.
Plus de réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!