How to get the integral expression?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to solve following expression in Matlab.
And my script is
clc;close all;clear all;
syms s phis r phir
A=1;m=1;n=1;L=100;alpha=1;
k=(2*pi)/(550*10^-9);
us=A*((-1j*sqrt(2*k*alpha)*s*exp(-1j*phis))^m)*exp(-k*alpha*s*s)*laguerreL(n,m,2*k*alpha*s*s);
C=((-1j*k*exp(1j*k*L))/(2*pi*L))*exp((1j*k*r*r)/(2*L));
f = @(s,phis,r,phir) C*s*us*exp(((1j*k)/(2*L))*(-2*r*s*cos(phir-phis)+(s^2)));
g = @(s,phis,r,phir) integral2(@(s,phis) f(s,phis,r,phir),0,Inf,0,2*pi)
I need to get the final result as
How could I get the result like this?
3 commentaires
Walter Roberson
le 4 Jan 2023
syms s phis r phir
Pi = sym(pi);
Q = @(v) sym(v);
A = Q(1); m = Q(1); n = Q(1); L = Q(100); alpha = Q(1);
k = (2*Pi)/(Q(550)*Q(10)^-9);
us = A*((-1j*sqrt(2*k*alpha)*s*exp(-1j*phis))^m)*exp(-k*alpha*s*s)*laguerreL(n,m,2*k*alpha*s*s);
C = ((-1j*k*exp(1j*k*L))/(2*Pi*L))*exp((1j*k*r*r)/(2*L));
f(s,phis,r,phir) = C*s*us*exp(((1j*k)/(2*L))*(-2*r*s*cos(phir-phis)+(s^2)));
g1(s,r,phir) = int(f(s,phis,r,phir), phis, 0,2*Pi, 'hold', true)
g2(r,phir) = int(g1(s,r,phir), s, 0, Inf, 'hold', true)
%decent speed up to this point. But the below is somewhat slow.
%and all it ends up doing is stripping the 'hold' status from the int()
G2 = release(g2)
If you are planning to go to a numeric function handle using integral(), then you can matlabFunction(g2) without having to release() . At least in the current version you can; my recollection is that in the previous release you could not do that.
The function generated by matlabFunction() looks like
@(r,phir)integral(@(s)integral(@(phis)sqrt(1.1e+1).*8.944271909999159e+3.*s.^2.*sqrt(pi).*exp(pi.*6.363636363636364e-1i).*exp(phis.*-1i).*exp(pi.*(s.^2-r.*s.*cos(phir-phis).*2.0).*1.818181818181818e+4i).*exp(r.^2.*pi.*1.818181818181818e+4i).*exp(s.^2.*pi.*(-3.636363636363636e+6)).*(s.^2.*pi.*7.272727272727273e+6-2.0).*(-1.652892561983471e+3),0.0,pi.*2.0),0.0,Inf)
Réponses (0)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!