Plotting the function by the points that need to be determined
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
It is necessary to plot F(t) by points. The function F(t) is a sum from 0 to nD(t)(nD is the upper limit of the sum) which depends on 't', i.e. I have an array 't' and an array nD(t) is formed from it, it contains 20 values [496, 248, 165, ...], the first point will be the final sum of F(t) with an upper limit of 496, the first point will be the final sum of F(t) with an upper limit of 248, etc., it is necessary to plot F(t) at these 20 points.
My code:
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 0;
for n = 0:49
C_2 = C_2 + (1/(2.*n+1)).*k0.*real(sqrt(3601+1i.*(2.*n+1))-((1+1i)./sqrt(2)).*sqrt(2.*n+1)); % константа
end
%% calculation
F = f_calc(t,nD);
plot(t,F, '-r');
%% F(t)
function F = f_calc(t,nD)
global d k0 h_bar ksi m;
F = 0;
for i = 1:20
n = nD(1,i);
F = F + 1/(2*n+1).*(k0.*real(((f_p1(n,t)-f_p2(n,t))./2))+(f_arg_2(n,t)-f_arg_1(n,t))./d);
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
2 commentaires
Torsten
le 12 Jan 2023
So you expect F to be a matrix of size numel(t) x numel(nD) where element (i,j) is the sum for t(i), taken from 0 to nD(j) ?
Réponses (2)
Torsten
le 12 Jan 2023
Modifié(e) : Torsten
le 15 Jan 2023
Maybe something like this ?
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 0;
for n = 0:49
C_2 = C_2 + (1/(2.*n+1)).*k0.*real(sqrt(3601+1i.*(2.*n+1))-((1+1i)./sqrt(2)).*sqrt(2.*n+1)); % константа
end
%% calculation
F = f_calc(t,nD);
hold on
plot(t,F(:,1),"Color","red");
plot(t,F(:,numel(nD)),"Color","blue");
hold off
grid on
function F = f_calc(t,nD)
global d k0 h_bar ksi m;
F = zeros(numel(t),numel(nD));
for i = 1:numel(t)
for j = 1:numel(nD)
n = nD(j);
for k = 0:n
F(i,j) = F(i,j) + 1/(2*k+1).*(k0.*real(((f_p1(k,t(i))-f_p2(k,t(i)))./2))+(f_arg_2(k,t(i))-f_arg_1(k,t(i)))./d);
end
end
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
7 commentaires
Torsten
le 15 Jan 2023
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 0;
for n = 0:49
C_2 = C_2 + (1/(2.*n+1)).*k0.*real(sqrt(3601+1i.*(2.*n+1))-((1+1i)./sqrt(2)).*sqrt(2.*n+1)); % константа
end
%% calculation
F = f_calc(t,nD);
plot(t,F)
grid on
function F = f_calc(t,nD)
global d k0 h_bar ksi m;
F = zeros(1,numel(t));
for i = 1:numel(t)
for k = 0:nD(i)
F(i) = F(i) + 1/(2*k+1).*(k0.*real(((f_p1(k,t(i))-f_p2(k,t(i)))./2))+(f_arg_2(k,t(i))-f_arg_1(k,t(i)))./d);
end
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
0 commentaires
Voir également
Catégories
En savoir plus sur 2-D and 3-D Plots dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!