Not enough input arguments.
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Working with A_new and trying to implement it into the R function but keep getting an error for not enough input arguments.
%Values
GMs = 1.3271244*10^20; %Nm^2/kg
GMe = GMs/332946;
x_1 = -124850219*1000; %km -> m
x_2 = -78506090*1000; %km-> m
v_1 = 15.857131*1000; %km/s-> m/s
v_2 = -25.712187*1000; %km/s->m/s
%astroids
x_1a =-154965574*1000;%km/s->m/s
x_2a = -249465245*1000;%km/s->m/s
v_1a= 24.723504*1000;%km/s->m/s
v_2a = 2.645546*1000;%km/s->m/s
% a anonymous function
x_i = [x_1,x_2];
% x_2D = sqrt(x_1^2+x_2^2); %2D- x
% x_2D = vecnorm(x_i);
% A = @(x) [((-GMs/(x_2D^3))*x_1) ; (-GMs/(x_2D^3))*x_2];
A = @(x) ( -GMs ./ (vecnorm(x).^3)) * x; %Acceleration
A_new= @(x,x_e) (( -GMs ./ (vecnorm(x).^3)) * x) - (GMe ./ (vecnorm(x-x_e).^3)*(x-x_e)); %acceleration with earths gravity
% a_i = [a_1 a_2]
a_i = A(x_i)';
% below is the values I got and they match the values given
a_1 = 5.17; %mm/s^2 ->0.0052 m/s^2
a_2 = 3.25; %mm/s^2 -> 0.0032m/s^2
%b combine arrays into 2x2 matrix
v_i = [v_1,v_2];
v_ia =[v_1a,v_2a];
%u = [x_1, v_1; x_2, v_2]; %Earth
u=[x_1, v_1; x_2, v_2; x_1a, v_1a; x_2a,v_2a];%astroid + Earth
R = @(u) [u(1:2,2),A(u(1:2,1));u(3:4,2),A_new(u(3:4,1))];%based on solution from class
%R = @(u) [u(:,2),A(u(:,1))]; for part b
%R = @(u) [u(1:2,2),A(u(1:2,1));u(3:4,2),A(u(3:4,1))]; for f and g
% R = @(u) [v_i A(x)];
%c Motion of earth over 366 days
% Explicit Euler Scheme
t = 0;
dt = 100;
matrix_u=u(:,1);
while t(end)< 31622400
t(end+1)=t(end)+dt;
%u=expliciteuler(u,dt,R);
u=rungekutta(u,dt,R); %e Runge-Kutta Scheme
matrix_u(:,end+1)=u(:,1);
end
figure(1)
plot(matrix_u(1,:),matrix_u(2,:),'g',matrix_u(3,:),matrix_u(4,:),'r') %d plot explicit Euler and e Rungekutta
grid on
legend('Earths Orbit', 'Astroid Orbit')
%g distance between earth and astroid orbit
d = vecnorm( [matrix_u(1, : ) ; matrix_u( 2, : ) ] - [ matrix_u( 3 , : ) ; matrix_u( 4 , : ) ] );
d_o= d*(1/332946);
%d(1:50) % to recall some of the distances
%y=min(d)
[min_value, min_index] = min(d)
[min_value, min_index] = min(d_o)
1 commentaire
Réponses (1)
Sulaymon Eshkabilov
le 14 Jan 2023
Modifié(e) : Sulaymon Eshkabilov
le 14 Jan 2023
In your A_new, you should have vecnorm known in A_new. If vecnorm() is a norm of a vector x that you are trying to compute, then you had better use this syntax while calling: A_new , e.g.:
A_new= @(x,x_e) (( -GMs ./ (norm(x).^3)) * x) - (GMe ./ (norm(x-x_e).^3)*(x-x_e));
1 commentaire
Walter Roberson
le 14 Jan 2023
I do not understand what you are saying about vecnorm ?
Or are you saying that it has been used incorrectly ??
Voir également
Catégories
En savoir plus sur Earth and Planetary Science dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!