Sound absorption coefficient of membrane backed with air cavity
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
0 commentaires
Réponse acceptée
VBBV
le 17 Jan 2023
Modifié(e) : VBBV
le 17 Jan 2023
clc
clear all;
f= (100:2:1600);
omega= 2*pi*f;
rho_s=0.265;
T=76.53*(1+1j*0.005);
D=0.1;
a=0.05; % Fig 2 a
c=343;
rho_0=1.213;
Z_0 = rho_0*c;
k0=omega/c;
km=omega.*sqrt(rho_s/T);
%% Impedance of membrane with air cavity only
% Z_m = (1j*omega*rho_s)./(1-((2./km*a).*(besselj(1, km*a)./besselj(0,km*a))));
Z_m = (1j*omega*rho_s)./(((besselj(0, km*a)./besselj(2,km*a))));
Z_w = -1j*Z_0*cot(k0*D);
Z_s = Z_m + Z_w;
Z_s = Z_s/Z_0;
R = (Z_s - 1)./(Z_s + 1);
alpha_1 = 1 - ((abs(R)).^2);
figure(1)
set(gca,'FontSize',16)
plot(f,alpha_1); % check using semilogx
%xticklabels(xL)
xlabel('Frequency (Hz)')
ylabel('Sound absorption coefficient')
grid on
grid minor
ylim([0 1])
set(gca, 'XScale', 'log')
The plot was drawn using the below equation
Z_m = (1j*omega*rho_s)./(((besselj(0, km*a)./besselj(2,km*a)))); % Eq (3) where he writes as it
% can also be written as,
and not with equation you used. Convert the log representation of xlabels using xticklabels
3 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Partial Differential Equation Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!