How to use conditional bounds for parameters with lsqcurvefit?

2 vues (au cours des 30 derniers jours)
Akhil
Akhil le 25 Jan 2023
Commenté : Akhil le 25 Jan 2023
I am trying to fit an exponential curve to a set of data (Exponential Cumulative Distribution Function).
I would like to solve for the parameters λ, , and , however there are certain conditions with which I need to bound the parameters.
"The and are non-negative values that can be both be 0 but both values cannot be greater than 0 at the same time" as well as "The natural logarithm of λ can be any value between zero and 4."
Is there a way in which I would be be able to define these conditions using lsqcurvefit to solve for the parameters? If not how should I approach fitting this curve to my data? Below is my attempt to use lsqcurvefit without the conditional between and .
xdata = 0:7;
ydata = 100*[0 0.112543130593672 0.814735805710535 1 1 1 1 1];
lb = [log(1), 0, 0];
ub = [log(4), 7, 100]; % How to define upper bound with conditions?
fun = @(x,xdata) (1 - exp(-x(1)*(xdata-x(2))) + x(3));
x = lsqcurvefit(fun,[0, 0, 0],xdata,ydata, lb, ub)
plot(xdata, 1*ydata, '.k', 'MarkerSize', 20)
hold on
plot(xdata, 1*fun(x, xdata))
  1 commentaire
Matt J
Matt J le 25 Jan 2023
The natural logarithm of λ can be any value between zero and 4.
If 0<=log(lambda)<=4, then your bounds on lambda would be exp(0) <=lambda<=exp(4), whereas in your code, you have log(1) <=lambda<=log(4)

Connectez-vous pour commenter.

Réponse acceptée

Matt J
Matt J le 25 Jan 2023
Modifié(e) : Matt J le 25 Jan 2023
You must divide the problem into two cases: one case where X0 is fixed at 0 and the second when Y0 is fixed at zero.
xdata = 0:7;
ydata = 100*[0 0.112543130593672 0.814735805710535 1 1 1 1 1];
lb = [exp(0), 0, 0];
ub = [exp(4), 7, 100];
%Case 1: Y0=0
fun = @(x,xdata) (1 - exp(-x(1)*(xdata-x(2))) );
x = lsqcurvefit(fun,[0, 0],xdata,ydata, lb(1:2), ub(1:2));
Initial point is a local minimum. Optimization completed because the size of the gradient at the initial point is less than the value of the optimality tolerance.
sol{1}=[x(1),x(2),0];
%Case 2: X0=0
fun = @(x,xdata) (1 - exp(-x(1)*(xdata)) +x(2));
x = lsqcurvefit(fun,[0, 0],xdata,ydata, lb([1,3]), ub([1,3]) );
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
sol{2}=[x(1) 0 x(2)];
Now test each solution and see which gives the best resnorm. Clearly, sol{2} is the best:
Fun = @(x) norm( 1 - exp( -x(1)*(xdata-x(2)) ) + x(3) -ydata);
Fun(sol{1})
ans = 235.7671
Fun(sol{2})
ans = 112.7009
  1 commentaire
Akhil
Akhil le 25 Jan 2023
Thank you, definitely a much simpler solution than what I was expecting!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Nonlinear Optimization dans Help Center et File Exchange

Produits


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by