How to present (x(t))'', (θ(t))'' in symbolic version matlab?
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Matthew Worker
le 6 Fév 2023
Réponse apportée : Walter Roberson
le 6 Fév 2023
There are six equations below (M, m, g, b, L, J are constant):
M*(x(t))'' = F(t) - N(t) - b*(x(t))'
J*(θ(t))'' = P(t)*sin(θ(t))*(L/2) - N(t)*cos(θ(t))*(L/2)
m*(xp(t))'' = N(t)
m*(yp(t))'' = P(t) - mg
xp(t) = x(t) +(L/2)*sin(θ(t))
yp(t) = (L/2)*cos(θ(t))
I want to combine and simplify these 6 symbolic equations into 2 symbolic euqations only presented by x(t), θ(t) and F(t).
However, I do not know how to show the (x(t))'', (θ(t))'' in symbolic version. Can anyone help me with it?
syms x(t)?
0 commentaires
Réponse acceptée
Walter Roberson
le 6 Fév 2023
syms b J g L M m
syms F(t) N(t) P(t) theta(t) x(t) xp(t) yp(t)
x_prime = diff(x);
x_dprime = diff(x_prime);
theta_prime = diff(theta)
theta_dprime = diff(theta_prime);
xp_prime = diff(xp);
xp_dprime = diff(xp_prime);
yp_prime = diff(yp);
yp_dprime = diff(yp_prime);
eqn1 = M*xp_dprime == F - N - b*x_prime
eqn2 = J*theta_dprime == P*sin(theta)*(L/2) - N * cos(theta)*(L/2)
eqn3 = m*xp_dprime == N
eqn4 = m*yp_dprime == P - m*g
eqn5 = xp == x + (L/2)*sin(theta)
eqn6 = yp == (L/2)*cos(theta)
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!