How to present (x(t))'', (θ(t))'' in symbolic version matlab?

1 vue (au cours des 30 derniers jours)
Matthew Worker le 6 Fév 2023
There are six equations below (M, m, g, b, L, J are constant):
M*(x(t))'' = F(t) - N(t) - b*(x(t))'
J*(θ(t))'' = P(t)*sin(θ(t))*(L/2) - N(t)*cos(θ(t))*(L/2)
m*(xp(t))'' = N(t)
m*(yp(t))'' = P(t) - mg
xp(t) = x(t) +(L/2)*sin(θ(t))
yp(t) = (L/2)*cos(θ(t))
I want to combine and simplify these 6 symbolic equations into 2 symbolic euqations only presented by x(t), θ(t) and F(t).
However, I do not know how to show the (x(t))'', (θ(t))'' in symbolic version. Can anyone help me with it?
syms x(t)?
0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

Réponse acceptée

Walter Roberson le 6 Fév 2023
syms b J g L M m
syms F(t) N(t) P(t) theta(t) x(t) xp(t) yp(t)
x_prime = diff(x);
x_dprime = diff(x_prime);
theta_prime = diff(theta)
theta_prime(t) =
theta_dprime = diff(theta_prime);
xp_prime = diff(xp);
xp_dprime = diff(xp_prime);
yp_prime = diff(yp);
yp_dprime = diff(yp_prime);
eqn1 = M*xp_dprime == F - N - b*x_prime
eqn1(t) =
eqn2 = J*theta_dprime == P*sin(theta)*(L/2) - N * cos(theta)*(L/2)
eqn2(t) =
eqn3 = m*xp_dprime == N
eqn3(t) =
eqn4 = m*yp_dprime == P - m*g
eqn4(t) =
eqn5 = xp == x + (L/2)*sin(theta)
eqn5(t) =
eqn6 = yp == (L/2)*cos(theta)
eqn6(t) =
0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

Catégories

En savoir plus sur Calculus dans Help Center et File Exchange

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by