Epicycloid curve calculating arch length using integral method

3 vues (au cours des 30 derniers jours)
pauli relanderi
pauli relanderi le 7 Fév 2023
Commenté : pauli relanderi le 8 Fév 2023
Im trying to calculate the length of the Epicycloid curve.
i have the x and y coordinates right and i get the correct looking plot, but cant figure out how to calculate the length of the epicycloid curve.
I already tried to calculate, but didnt get results that make sense.
Any help would be greatly appreciated.
Here is a picture of what im calculating:
clear all
R=8;
L=6;
Alfa=2*pi;
Bertta=4*pi;
T=2*pi/Alfa;
syms t
alfa0=Alfa*t;
beta0=Bertta*t;
%%%%%%%%%%%%%%%%%%% %R Coordinates
x0(t)=R*cos(alfa0);
y0(t)=R*sin(alfa0);
%%%%%%%%%%%%%%%%%% %L Coordinates
x(t)=x0(t)+L*cos(alfa0+beta0);
y(t)=y0(t)+L*sin(alfa0+beta0);
%
%x1(t)=diff(x,t)
%y1(t)=diff(y,t)
%t0=2;
%dx=x1(t0)
%dy=y1(t0)
%s0 = @(t) sqrt( ( R.*cosd(t)+L.*cosd(3.*t) ).^2 + (R.*sind(t)+L.*sind(3.*t)).^2);
%s = integral(s0,0,2*pi)
%pit = sqrt(1+(dy/dx).^2*dx)
%lenght = integral(pit,0,2*pi)
fplot(x,y,[0,T],'linewidth',2)
title(['R = ',num2str(R),', L = ',num2str(L),', s = ',num2str(5)])
hold off
grid
axis equal
xlabel('x')
ylabel('y')

Réponse acceptée

Torsten
Torsten le 7 Fév 2023
curvelength = vpaintegral(sqrt(diff(x,t)^2+diff(y,t)^2),t,0,T)

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Produits


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by