Epicycloid curve calculating arch length using integral method
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
pauli relanderi
le 7 Fév 2023
Commenté : pauli relanderi
le 8 Fév 2023
Im trying to calculate the length of the Epicycloid curve.
i have the x and y coordinates right and i get the correct looking plot, but cant figure out how to calculate the length of the epicycloid curve.
I already tried to calculate, but didnt get results that make sense.
Any help would be greatly appreciated.
Here is a picture of what im calculating:
clear all
R=8;
L=6;
Alfa=2*pi;
Bertta=4*pi;
T=2*pi/Alfa;
syms t
alfa0=Alfa*t;
beta0=Bertta*t;
%%%%%%%%%%%%%%%%%%% %R Coordinates
x0(t)=R*cos(alfa0);
y0(t)=R*sin(alfa0);
%%%%%%%%%%%%%%%%%% %L Coordinates
x(t)=x0(t)+L*cos(alfa0+beta0);
y(t)=y0(t)+L*sin(alfa0+beta0);
%
%x1(t)=diff(x,t)
%y1(t)=diff(y,t)
%t0=2;
%dx=x1(t0)
%dy=y1(t0)
%s0 = @(t) sqrt( ( R.*cosd(t)+L.*cosd(3.*t) ).^2 + (R.*sind(t)+L.*sind(3.*t)).^2);
%s = integral(s0,0,2*pi)
%pit = sqrt(1+(dy/dx).^2*dx)
%lenght = integral(pit,0,2*pi)
fplot(x,y,[0,T],'linewidth',2)
title(['R = ',num2str(R),', L = ',num2str(L),', s = ',num2str(5)])
hold off
grid
axis equal
xlabel('x')
ylabel('y')
0 commentaires
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Surface and Mesh Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!