Number of observations in X and Y disagree. - Error training a U-Net for classification

1 vue (au cours des 30 derniers jours)
I am trying to train a U-Net for classification aim. Each of the 8x8 central pixels of my input matrix 48x48 (I have a 4-D matrix as input: 48x48x4xN) have to be classified in 8 different classes. I built a U-Net with the 'ConvolutionPadding' option set as 'valid' (this is the reason why starting from a 48x48 the last layer output is 8x8) and the 'pixelClassificationLayer' as classification layer.
Follwing my code where A and B (input and responses, respectively) are not the real data but are used only as an example.
A=rand(48,48,4,100);%Input
B=ones(8,8,1,100);%Responses
B=categorical(B(:));
EncoderDepth=2;
NFEF=[16,32,64];
sz=size(A);
MaxEpoch=200;%Maximum number of epochs
ILR=1e-06;%Initial learn rate value
SGF=[0.9,0.99,0.999];
MiniBatch=2000;
L2R=[1e-05,1e-04,1e-03];
for i=3%:numel(NFEF)
lgraph=unetLayers([48,48,4],2,'EncoderDepth',EncoderDepth,'NumFirstEncoderFilters',NFEF(i),'ConvolutionPadding','valid');
lgraph=removeLayers(lgraph,'Final-ConvolutionLayer');
lgraph=removeLayers(lgraph,'Softmax-Layer');
lgraph=removeLayers(lgraph,'Segmentation-Layer');
lgraph=addLayers(lgraph,convolution2dLayer([1,1],1,'name','Final-ConvolutionLayer'));
lgraph=addLayers(lgraph,softmaxLayer('name','Softmax-Layer'));
lgraph=addLayers(lgraph,pixelClassificationLayer('name','classificationLayer'));
lgraph=connectLayers(lgraph,'Decoder-Stage-2-ReLU-2','Final-ConvolutionLayer');
lgraph=connectLayers(lgraph,'Final-ConvolutionLayer','Softmax-Layer');
lgraph=connectLayers(lgraph,'Softmax-Layer','classificationLayer');
for j=1:numel(ILR)
for k=1%:numel(SGF)
options = trainingOptions('rmsprop','InitialLearnRate',ILR(j),...
'MiniBatchSize',MiniBatch,'Shuffle','every-epoch',...
'SquaredGradientDecayFactor',0.99,...
'MaxEpochs',MaxEpoch,...
...%'L2Regularization',L2R(j),...
...%'ValidationData',{MSGdata_VAL_V11,DPRGMI_ValDataset_DeepLearn}, ...
...%'ValidationFrequency',floor(sz(4)/MiniBatch), ...
'ExecutionEnvironment','cpu','Plots','training-progress');
[net,info]=trainNetwork(A,B,lgraph,options);
UNET.net=net;
UNET.info=info;
EpochSTR=num2str(MaxEpoch);
MiniBatchSTR=num2str(MiniBatch);
ILRstr=num2str(ILR(j));
NFEFstr=num2str(NFEF(i));
% SGFstr=num2str(SGF(k));
% L2Rstr=num2str(L2R(j));
save([PathOut,filesep,'UNET_NoPadding_MaxPool_',EpochSTR,'Epochs_',MiniBatchSTR,'MBS_',ILRstr,'ILR_',...
NFEFstr,'NFEF_OversampledData_NoParallax_NoBN_ValDataset_PRthre',PRthre,'mmh_',VERin,'_',VERout,'.mat'],'UNET');
end
end
end
When I run the code I get the following error message:
Error using trainNetwork
Number of observations in X and Y disagree.
Error in untitled2 (line 42)
[net,info]=trainNetwork(A,B,lgraph,options);
I would appreciate any help to fix this problem.

Réponses (1)

Matt J
Matt J le 10 Fév 2023
Modifié(e) : Matt J le 10 Fév 2023
You have 100 training images. Therefore, B should be 100x1, not 6400x1.
  4 commentaires
Leo Pio D'Adderio
Leo Pio D'Adderio le 13 Fév 2023
Matt, what I learned is that pixelLabelDatastore works reading image files (e.g. jpeg, png, tiff, ecc.). I do not have these files, but netCDf files that I read and extract my numerical matrices (that I save in .mat files). So, I talk about images because they come from satellite images, but I work with numerical matrices.
I am still facing the problem to classify each pixel of my matrix.
Matt J
Matt J le 13 Fév 2023
Modifié(e) : Matt J le 13 Fév 2023
I do not have these files, but netCDf files that I read and extract my numerical matrices (that I save in .mat files)
The type of file you store your responses in should not be an issue. You can use the ReadFcn parameter to allow a pixelLabelDataStore to read any kind of file:

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by