Calculate the difference between minimum values of a parabola and straight line (from a plot)
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Alina Abdikadyr
le 10 Fév 2023
Commenté : Les Beckham
le 10 Fév 2023
Hello everyone, please could you help me with a code.
How I can calculate the values from a plot? I need the difference between straight line (P) and between the minimum value of a parabola (P) for each curve.
So, for example in this curve, the difference between the straight blue curve and the first parabola, then the next straight line and green parabola and so on.
My code is:
clear all; close all
W = 60000;
S = 28.2;
AR=7;
cd0 = 0.02;
k = 0.04;
RC=0.51;
clalpha = 2*pi;
Psl=741000;
hv=0:1:10;
cdminp=4*cd0;
clminp=sqrt(3*cd0/k);
Vmin=sqrt(2*W/(1.225*28.2*clminp));
D=0.5*1.225*Vmin^2*S*cdminp;
Pminreq=D*Vmin;
deltaPgiven=RC*W;
figure(1);hold on; xlabel('V');ylabel('P')
hv=0:1:10;
for k1 = 1:numel(hv)
h = hv(k1);
i=0;
for alpha = 1:0.25:15
i=i+1;
rho(i)=1.225*exp(-h/10.4);
cl(i) = clalpha * alpha * pi/180;
V(i) = sqrt(2*W/rho(i)/S/cl(i));
L(i) = 0.5 * rho(i) * V(i) * V(i) * S * cl(i);
cd(i) = cd0 + k * cl(i) * cl(i);
D(i) = 0.5 * rho(i) * V(i) * V(i) * S * cd(i);
clcd(i) = cl(i)/cd(i);
p(i) = D(i)*V(i);
Ph(i)=Psl*(rho(i)/1.225).^0.75;
end
figure(1); plot(V,p)
hold on
plot(V,Ph);
end
0 commentaires
Réponse acceptée
Les Beckham
le 10 Fév 2023
Modifié(e) : Les Beckham
le 10 Fév 2023
Maybe this?
W = 60000;
S = 28.2;
AR=7;
cd0 = 0.02;
k = 0.04;
RC=0.51;
clalpha = 2*pi;
Psl=741000;
hv=0:1:10;
cdminp=4*cd0;
clminp=sqrt(3*cd0/k);
Vmin=sqrt(2*W/(1.225*28.2*clminp));
D=0.5*1.225*Vmin^2*S*cdminp;
Pminreq=D*Vmin;
deltaPgiven=RC*W;
figure(1);hold on; xlabel('V');ylabel('P')
hv=0:1:10;
for k1 = 1:numel(hv)
h = hv(k1);
i=0;
for alpha = 1:0.25:15
i=i+1;
rho(i)=1.225*exp(-h/10.4);
cl(i) = clalpha * alpha * pi/180;
V(i) = sqrt(2*W/rho(i)/S/cl(i));
L(i) = 0.5 * rho(i) * V(i) * V(i) * S * cl(i);
cd(i) = cd0 + k * cl(i) * cl(i);
D(i) = 0.5 * rho(i) * V(i) * V(i) * S * cd(i);
clcd(i) = cl(i)/cd(i);
p(i) = D(i)*V(i);
Ph(i)=Psl*(rho(i)/1.225).^0.75;
end
figure(1); plot(V,p)
hold on
plot(V,Ph);
[pmin, imin] = min(p); % find the min p
deltas(k1) = Ph(1) - pmin; % calculate the difference
tolerance = 5000; % or whatever you want
if (abs(deltas(k1) - 300000) < tolerance)
fprintf('delta = %8.1f at h = %4.1f, rho = %.5f, V = %.2f, Ph = %.1f, p = %.1f\n', ...
deltas(k1), h, rho(imin), V(imin), Ph(imin), p(imin))
end
end
legend(compose('h = %.1f', hv), 'location', 'northwest')
grid on
8 commentaires
Les Beckham
le 10 Fév 2023
It just represents how close to 300000 the delta has to be to make the code print the results. Adjust as desired.
Plus de réponses (1)
Torsten
le 10 Fév 2023
Modifié(e) : Torsten
le 10 Fév 2023
syms h V W S rho cd0 k cl Psl
eqn = V == sqrt(2*W/rho/S/cl);
cl = solve(eqn,cl);
cd = cd0 + k * cl^2;
D = 0.5 * rho * V * V * S * cd;
p = D*V;
Vmin = solve(diff(p,V)==0,V);
pmin = subs(p,V,Vmin);
Ph = Psl*(rho/1.225)^0.75;
hnum = 0:0.01:10;
Wnum = 60000;
Snum = 28.2;
rhonum = 1.225*exp(-hnum/10.4);
cd0num = 0.02;
knum = 0.04;
Pslnum = 741000;
for i = 1:numel(hnum)
Phnum(i) = double(subs(Ph,[rho Psl],[rhonum(i),Pslnum]));
pm = double(subs(pmin,[W S rho cd0 k],[Wnum Snum rhonum(i) cd0num,knum]));
pminnum(i) = pm(end);
deltaP(i) = Phnum(i)-pminnum(i);
end
format long
deltaP.'
idx = deltaP > 2.8e5 & deltaP < 3.2e5; % select those deltaP with 2.8e5 <= deltaP < = 3.2e5
[hnum(idx).' deltaP(idx).'] % Show these values together with the corresponding h values
Voir également
Catégories
En savoir plus sur Particle & Nuclear Physics dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!