I am facing error while solving two 2nd order differential equation in which boundary condition are dependent to each other. Any idea where I am doing wrong??
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Amit kumar
le 17 Fév 2023
Commenté : Amit kumar
le 21 Fév 2023

clc
clear all;
close all;
syms psi_1(z)
syms psi_2(z)
K1=1
K2=1
K3=1
Dpsi_1 = diff(psi_1);
Dpsi_2 = diff(psi_2);
%%%%%%%%%% Differential equations %%%%%%%%%%%%%
ode1=diff(psi_1,z,2)-psi_1/K1==K2
ode2 = diff(psi_2,z,2)==K3
%%%%%%%%%% initial conditions %%%%%%%%
cond1 = psi_1(0) == 0;
cond2=psi_1(1)==psi_2(1)
cond3 = Dpsi_1(1) == Dpsi_2(1);
cond4=psi_2(2) == 0.5;
conds_1 = [cond1 cond2];
conds_2 = [cond3 cond4];
psi_1Sol(z) = dsolve(ode1,conds_1)
psi_2Sol(z) = dsolve(ode2,conds_2)
0 commentaires
Réponse acceptée
Oguz Kaan Hancioglu
le 17 Fév 2023
Since boundary conditions are related to each variable, solving all odes in one dsolve command may solve your problem.
[psi_1Sol(z), psi_2Sol(z)] = dsolve(ode1,ode2,conds_1,conds_2)
Plus de réponses (1)
Torsten
le 17 Fév 2023
Modifié(e) : Torsten
le 17 Fév 2023
syms y1(z) y2(z) z C11 C12 C21 C22
K1 = 1;
K2 = 1;
K3 = 1;
eqn1 = diff(y1,z,2) - y1/K1 == K2;
eqn2 = diff(y2,z,2) == K3;
sol1 = dsolve(eqn1);
var1 = symvar(sol1);
sol1 = subs(sol1,[var1(1),var1(2)],[C11 C12]);
sol2 = dsolve(eqn2);
var2 = symvar(sol2);
sol2 = subs(sol2,[var2(1) var2(2)],[C21 C22]);
eqn1_alg = subs(sol1,z,0)==0;
eqn2_alg = subs(diff(sol1,z),z,1)==subs(diff(sol2,z),z,1);
eqn3_alg = subs(sol1,z,1)==subs(sol2,z,1);
eqn4_alg = subs(sol2,z,2)==0.5;
sol_alg = solve([eqn1_alg,eqn2_alg,eqn3_alg,eqn4_alg],[C11 C12 C21 C22]);
sol1 = subs(sol1,[C11 C12],[sol_alg.C11 sol_alg.C12]);
sol2 = subs(sol2,[C21 C22],[sol_alg.C21 sol_alg.C22]);
figure(1)
hold on
fplot(sol1,[0 1])
fplot(sol2,[1 2])
hold off
grid on
@Oguz Kaan Hancioglu suggestion works, too:
syms psi_1(z)
syms psi_2(z)
K1=1;
K2=1;
K3=1;
Dpsi_1 = diff(psi_1);
Dpsi_2 = diff(psi_2);
%%%%%%%%%% Differential equations %%%%%%%%%%%%%
ode1=diff(psi_1,z,2)-psi_1/K1==K2;
ode2 = diff(psi_2,z,2)==K3;
%%%%%%%%%% initial conditions %%%%%%%%
cond1 = psi_1(0) == 0;
cond2=psi_1(1)==psi_2(1);
cond3 = Dpsi_1(1) == Dpsi_2(1);
cond4=psi_2(2) == 0.5;
conds_1 = [cond1 cond2];
conds_2 = [cond3 cond4];
[psi_1Sol(z), psi_2Sol(z)] = dsolve(ode1,ode2,conds_1,conds_2);
figure(2)
hold on
fplot(psi_1Sol,[0 1])
fplot(psi_2Sol,[1 2])
hold off
grid on
Voir également
Catégories
En savoir plus sur Stability Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
