can i use a custom activation function in this neural network and in what way?
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Dimitris Kastoris
le 17 Fév 2023
Commenté : Dimitris Kastoris
le 23 Mar 2024
x = linspace(0,1,10000)';
inputSize = 1;
layers = [
featureInputLayer(inputSize,Normalization="none")
fullyConnectedLayer(10)
sigmoidLayer
fullyConnectedLayer(1)
sigmoidLayer];
dlnet = dlnetwork(layers);
numEpochs = 15;
miniBatchSize =100 ;
initialLearnRate = 0.5;
learnRateDropFactor = 0.5;
learnRateDropPeriod = 5;
momentum = 0.9;
icCoeff = 7;
ads = arrayDatastore(x,IterationDimension=1);
mbq = minibatchqueue(ads,MiniBatchSize=miniBatchSize,MiniBatchFormat="BC");
figure
set(gca,YScale="log")
lineLossTrain = animatedline(Color=[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss (log scale)")
grid on
velocity = [];
iteration = 0;
learnRate = initialLearnRate;
start = tic;
% Loop over epochs.
for epoch = 1:numEpochs
% Shuffle data.
mbq.shuffle
% Loop over mini-batches.
while hasdata(mbq)
iteration = iteration + 1;
% Read mini-batch of data.
dlX = next(mbq);
% Evaluate the model gradients and loss using dlfeval and the modelGradients function.
[gradients,loss] = dlfeval(@modelGradients, dlnet, dlX, icCoeff);
% Update network parameters using the SGDM optimizer.
[dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity,learnRate,momentum);
% To plot, convert the loss to double.
loss = double(gather(extractdata(loss)));
% Display the training progress.
D = duration(0,0,toc(start),Format="mm:ss.SS");
addpoints(lineLossTrain,iteration,loss)
title("Epoch: " + epoch + " of " + numEpochs + ", Elapsed: " + string(D))
drawnow
end
% Reduce the learning rate.
if mod(epoch,learnRateDropPeriod)==0
learnRate = learnRate*learnRateDropFactor;
end
end
0 commentaires
Réponse acceptée
Christopher Erickson
le 17 Fév 2023
There are two solutions I would suggest first:
If you have an elementwise activation function with no learnables (such as "exp" or "sin") you could use "functionLayer". For more generic workflows you could use a custom layer. I would only suggest using a custom layer if your activation function did not operate elementwise or if it has learnables; such as "prelu" in the examples.
Good luck!
2 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Custom Training Loops dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!