REQUIRE CODE FOR AKAIKE INFORMATION CRITERIA (AIC) VALUE FOR ESTIMATED MODEL

10 vues (au cours des 30 derniers jours)
I need to calculate Akaike Information Criterion value for my model. I need the code.

Réponse acceptée

Atharva
Atharva le 29 Mar 2023
The Akaike Information Criterion (AIC) value can be calculated using the log-likelihood function and the number of parameters in the model. Here is an example-
% assume that we have a vector of observed data 'y', and a vector of predicted data 'y_pred'
% calculate the log-likelihood function for the model
n = length(y);
sigma2 = var(y-y_pred);
logLikelihood = -0.5*n*log(2*pi) - 0.5*n*log(sigma2) - (1/(2*sigma2))*sum((y-y_pred).^2);
% calculate the number of parameters in the model
numParams = ; % insert the number of parameters in your model here
% calculate the AIC value
AIC = -2*logLikelihood + 2*numParams;

Plus de réponses (0)

Catégories

En savoir plus sur Multivariate Models dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by