Thomas algorithm - tridiagonal matrix
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Cesar Cardenas
le 1 Mar 2023
Commenté : Cesar Cardenas
le 2 Mar 2023
Is there any other way to code and solve the tridiagonal matrix? the idea would be to try to get the plot shown. Matlab beginner, so, no sure how to do it. Any help will be greatly appreciated. Thanks
clear
cm=1/100;
delta = 1*cm;
nu=1e-6;
Uinf=1;
H=2*delta;
y=linspace(0,H,40);
u=Uinf*erf(3*y/delta);
dy=mean(diff(y));
dx=100*dy;
Q=nu*dx/Uinf/dy^2;
a=-Q;
c=-Q;
b=1+2*Q;
N=length(y)-2;
M = diag(b*ones(1,N)) + diag(c*ones(1,N-1),1) + diag(a*ones(1,N-1),-1);
%Constant Ue
Ue = @(x) Uinf;
u = u(2:end-1);
x=0;
uall=[0,u,Ue(x)];
0 commentaires
Réponse acceptée
Torsten
le 2 Mar 2023
Modifié(e) : Torsten
le 2 Mar 2023
clear
cm=1/100;
delta = 1*cm;
nu=1e-6;
Uinf=1;
H=2*delta;
y=linspace(0,H,40);
u=Uinf*erf(3*y/delta);
dy=mean(diff(y));
dx=100*dy;
Q=nu*dx/Uinf/dy^2;
a=-Q;
c=-Q;
b=1+2*Q;
N = length(y);
M = diag(b*ones(1,N)) + diag(c*ones(1,N-1),1) + diag(a*ones(1,N-1),-1);
M(1,:) = [1,zeros(1,N-1)];
M(end,:) = [zeros(1,N-1),1];
%Constant Ue
Ue = @(x) Uinf;
u = u(2:end-1);
x=0;
uall=[0,u,Ue(x)];
sol = M\uall.';
plot(y,sol)
grid on
5 commentaires
Torsten
le 2 Mar 2023
You can assign values to certain elements in a matrix by using a loop. But if the above line to define M is correct, it's elegant, isn't it ? Why do you want to define it differently ?
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur GPU Computing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!