Slove function return empty solutions
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello, I'm trying to solve the attached syntax, but the aolve function return empty solutions. Please help.
syms V_1 V_2 x_1 x_2 r
pi1 = (V_1) * (x_1^r/(x_1^r+x_2^r)) - x_1
pi2 = (V_2) * (x_2^r/(x_1^r+x_2^r)) - x_2
dpi1dx = diff(pi1, x_1)
dpi2dx = diff(pi2, x_2)
s = solve(dpi1dx==0, dpi2dx==0, x_1, x_2)
2 commentaires
Réponses (2)
Walter Roberson
le 16 Mar 2023
Use dsolve for differential equations
20 commentaires
Walter Roberson
le 21 Mar 2023
The problem is not solveable for most r .
For example for r = 3/2 then the solutions are
RootOf(4*Z^3*x_2^(3/2) + 2*Z^6 - 3*Z*x_2^(3/2)*V_1 + 2*x_2^3,Z)^2
which is the set of Z such that the expression 4*etc becomes 0. But notice the Z^6 part -- so you would need the closed-form solution for a degree 6 polynomial, and such solutions only exist if the expression can be factored into polynomials of degree 4 or lower.
If r = N/4 for odd integer N, then you need to solve something of degree either 2*N+4 (for small N) or degree 2*N (starting at N = 5). r = 1/5 and r = 3/5 are tractable (but long!!), the other N/5 are not tractable.
Roy
le 21 Mar 2023
3 commentaires
Walter Roberson
le 22 Mar 2023
If you add the assumption of positive then they do resolve to 0
syms V_1 V_2 x_1 x_2 r positive
pi1 = (V_1) * (x_1^r/(x_1^r+x_2^r)) - x_1
pi2 = (V_2) * (x_2^r/(x_1^r+x_2^r)) - x_2
dpi1dx = diff(pi1, x_1)
dpi2dx = diff(pi2, x_2)
simplify(subs(dpi1dx,[x_1 x_2],[V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2,V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2]))
simplify(subs(dpi2dx,[x_1 x_2],[V_2*(r*(V_2/V_1)^(r-1))/(1+(V_2/V_1)^r)^2,V_1*(r*(V_1/V_2)^(r-1))/(1+(V_1/V_2)^r)^2]))
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!










