How to plot convolution between signal and Hilbert tranform operator
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi... I ask to reproduce the complex signal as a result from convolution between cosine wave and hilbert transform operator as a figure. I do the script as below, but then i confuse how to separate imaginary and real part signal. Can anyone help me?

t=0:0.01:1;
f=2;
omega=2*pi*f;
y=cos(omega*t);
%signal
h=1./(pi*t);
cs=conv(y,h);
% plot data
subplot (3,1,1)
plot (t,y)
subplot (3,1,2)
plot (t,h,'-r')
set(gca, 'XAxisLocation', 'origin', 'YAxisLocation', 'origin')
box off
subplot (3,1,3)
plot (t,cs)
0 commentaires
Réponse acceptée
Sufiyan
le 27 Avr 2023
Hi,
You can refer to the code below.
t = 0:0.01:1;
f = 2;
omega = 2*pi*f;
y = cos(omega*t);
h = [Inf, 1./(pi*t(2:end))];
cs = conv(y,h);
% Plot
subplot(3,1,1)
plot(t,y)
xlabel('Time')
ylabel('y(t)')
title('Input Signal')
subplot(3,1,2)
plot(t,h,'-r')
xlabel('Time')
ylabel('h(t)')
title('Impulse Response')
subplot(3,1,3)
t_cs = linspace(0,2,length(cs));
plot(t_cs,real(cs),'b')
hold on
plot(t_cs,imag(cs),'r')
xlabel('Time')
ylabel('cs(t)')
title('Real and Imaginary Parts')
legend('Real','Imaginary')
hold off
Hope this helps!
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Transforms dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!