Problem solving simultaneous ODEs using 4th order Runge-Kutta method (Too many input arguments.)

3 vues (au cours des 30 derniers jours)
I am trying to solve 6 ODEs simulataneously (three 2nd order and three 1st order). I am solving it using 4th order Runge-Kutta method. But I am getting an error: Too many input arguments.
Please suggest. My code is following.
tic
clear;
close all;
clc;
ae=10 ; % aspect ratio
ds=1*10^-3 ; % equivalent dia
ecc=((ae.^2)-1)./((ae.^2)+1) ; % eccentricity
g=9.81;
nu=0.89*10^-6 ;
A=0.2; % wave amplitude
k=0.33/A; % k*A <= 0.33 for Linear wave theory to hold correct
w1=sqrt(g*k); % angular frequency
T=2*pi/w1 ; % time period
B=1.1;
theta_ini= 0 ; % azimuthal angle matrix
phi_ini= pi/4 ; % polar angle matrix
vp= 0.1*w1*A ; % Particle intrinsic velocity (m/s)
H=3700; % depth of ocean
Fr=w1*A./sqrt(g*H); % Froude number
z0= 3 ;
% Time span for evolution of dynamics
t0 = 0; %seconds
tf =20*T; %seconds
dt=0.05 ;
t=t0:dt:tf ;
c1=18*nu/(B*ds^2) ;
% mass tensor in body axes
alpha0=(1./((ae.^2)-1).^(3/2)).*(2*sqrt((ae.^2)-1)+ae.*log((ae-sqrt(ae.^2-1))./(ae+sqrt(ae.^2-1)))) ;
beta0=(0.5./((ae.^2)-1).^(3/2)).*(2.*(ae.^2).*sqrt((ae.^2)-1)+ae.*log((ae-sqrt(ae.^2-1))./(ae+sqrt(ae.^2-1)))) ;
gamma0=beta0 ;
C11d=alpha0./(2-alpha0) ;
C22d=beta0./(2-beta0) ;
C33d=gamma0./(2-gamma0) ;
% resistance tensor in body axes
K11d=((4/3).*(ae.^(-1/3)).*(1-ae.^2))./(ae-((2*(ae.^2)-1).*log(ae+sqrt(ae.^2-1))./sqrt(ae.^2-1))) ;
K22d=((8/3)*(ae.^(-1/3)).*((ae.^2)-1))./(ae+((2*(ae.^2)-3).*log(ae+sqrt(ae.^2-1))./sqrt(ae.^2-1))) ;
K33d=K22d ;
K33_ini=K11d*cos(phi_ini)*cos(phi_ini)+K22d*sin(phi_ini)*sin(phi_ini) ; % K33 @t=0
% X=[x; vx; y; vy; z; vz; px; py; pz];
% RK4
fx = @(x,vx,y,vy,z,vz,px,py,pz) vx;
fvx = @(x,vx,y,vy,z,vz,px,py,pz) (1./(1+(1/B).*(C11d.*sin(acos(pz)).*sin(acos(pz))+C22d.*cos(acos(pz)).*cos(acos(pz))))).*((1/B).*((w1^2)*A*exp(k*z)*sin(k*x-w1*t)+...
w1*A*exp(k*z)*cos(k*x-w1*t).*(-k*w1*A*exp(k*z)*sin(k*x-w1*t))+w1*A*exp(k*z)*sin(k*x-w1*t).*(k*w1*A*exp(k*z)*cos(k*x-w1*t)))+...
(1/B)*((C11d.*sin(acos(pz)).*sin(acos(pz))+C22d.*cos(acos(pz)).*cos(acos(pz)))*(w1^2)*A*exp(k*z)*sin(k*x-w1*t))-...
c1*((K11d.*sin(acos(pz)).*sin(acos(pz))+K22d.*cos(acos(pz)).*cos(acos(pz))).*(vx-w1*A*exp(k*z)*cos(k*x-w1*t))));
fy = @(x,vx,y,vy,z,vz,px,py,pz) vy;
fvy = @(x,vx,y,vy,z,vz,px,py,pz) (1./(1+(1/B).*C22d)).*(-c1.*(K22.*vy));
fz = @(x,vx,y,vy,z,vz,px,py,pz) vz;
fvz = @(x,vx,y,vy,z,vz,px,py,pz) (1./(1+(1/B).*(C11d.*cos(acos(pz)).*cos(acos(pz))+C22d.*sin(acos(pz)).*sin(acos(pz))))).*((1/B).*(-(w1^2)*A*exp(k*z)*cos(k*x-w1*t)+...
w1*A*exp(k*z)*cos(k*x-w1*t).*(k*w1*A*exp(k*z)*cos(k*x-w1*t))+w1*A*exp(k*z)*sin(k*x-w1*t).*(k*w1*A*exp(k*z)*sin(k*x-w1*t)))+...
(1/B)*((C11d.*cos(acos(pz)).*cos(acos(pz))+C22d.*sin(acos(pz)).*sin(acos(pz)))*(-(w1^2)*A*exp(k*z)*cos(k*x-w1*t)))-...
c1.*((K11d.*cos(acos(pz)).*cos(acos(pz))+K22d.*sin(acos(pz)).*sin(acos(pz))).*(vz-w1*A*exp(k*z)*sin(k*x-w1*t)))-(1-1/B).*g);
fpx = @(x,vx,y,vy,z,vz,px,py,pz) ecc.*((-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*px+(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*pz)-ecc.*px.*((px.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*px+...
pz.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*px)+(px.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*pz+pz.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*pz));
fpy = @(x,vx,y,vy,z,vz,px,py,pz) -ecc.*py.*((px.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*px+pz.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*px)+...
(px.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*pz+pz.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*pz));
fpz = @(x,vx,y,vy,z,vz,px,py,pz) ecc.*((k*w1*A*exp(k*z)*cos(k*x-w1*t)).*px+(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*pz)-ecc.*pz.*((px.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*px+...
pz.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*px)+(px.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*pz+pz.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*pz));
h=dt;
x=zeros(length(t),1);
vx=zeros(length(t),1);
px=zeros(length(t),1);
y=zeros(length(t),1);
vy=zeros(length(t),1);
py=zeros(length(t),1);
z=zeros(length(t),1);
vz=zeros(length(t),1);
pz=zeros(length(t),1);
% Initial field velocity @t=0, x=0, z=0
u0x=w1*A;
u0y=0;
u0z=0;
% Initial particle velocity
v_ini_1p=u0x ;
v_ini_2p=u0y ;
v_ini_3p=-((B-1)*g*ds^2)/(18*nu*K33_ini)+u0z ;
% Initial particle orientation
initial_p1 = sin(phi_ini).*cos(theta_ini);
initial_p2 = sin(phi_ini).*sin(theta_ini);
initial_p3 = cos(phi_ini);
x(1) = 0 ;
vx(1) = v_ini_1p ;
y(1) = 0 ;
vy(1) = v_ini_2p ;
z(1) = -z0 ;
vz(1) = v_ini_3p ;
px(1) = initial_p1 ;
py(1) = initial_p2 ;
pz(1) = initial_p3 ;
for i=1: length(t)-1
k_1x = fx(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_1vx = fvx(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_1y = fy(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_1vy = fvy(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_1z = fz(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_1vz = fvz(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
K1y = Fy(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
K1z = Fz(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_1px = fpx(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_1py = fpy(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_1pz = fpz(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
k_2x = fx(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_2vx = fvx(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_2y = fy(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_2vy = fvy(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_2z = fz(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_2vz = fvz(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_2px = fpx(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_2py = fpy(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_2pz = fpz(t(i)+0.5*h, x(i)+0.5*h*k_1x, vx(i)+0.5*h*k_1vx, y(i)+0.5*h*k_1y, vy(i)+0.5*h*k_1vy, z(i)+0.5*h*k_1z, vz(i)+0.5*h*k_1vz, px(i)+0.5*h*k_1px, py(i)+0.5*h*k_1py, pz(i)+0.5*h*k_1pz);
k_3x = fx(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_3vx = fvx(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_3y = fy(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_3vy = fvy(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_3z = fz(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_3vz = fvz(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_3px = fpx(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_3py = fpy(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_3pz = fpz(t(i)+0.5*h, x(i)+0.5*h*k_2x, vx(i)+0.5*h*k_2vx, y(i)+0.5*h*k_2y, vy(i)+0.5*h*k_2vy, z(i)+0.5*h*k_2z, vz(i)+0.5*h*k_2vz, px(i)+0.5*h*k_2px, py(i)+0.5*h*k_2py, pz(i)+0.5*h*k_2pz);
k_4x = fx(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
k_4vx = fvx(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
k_4y = fy(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
k_4vy = fvy(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
k_4z = fz(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
k_4vz = fvz(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
k_4px = fpx(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
k_4py = fpy(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
k_4pz = fpz(t(i)+0.5*h, x(i)+0.5*h*k_3x, vx(i)+0.5*h*k_3vx, y(i)+0.5*h*k_3y, vy(i)+0.5*h*k_3vy, z(i)+0.5*h*k_3z, vz(i)+0.5*h*k_3vz, px(i)+0.5*h*k_3px, py(i)+0.5*h*k_3py, pz(i)+0.5*h*k_3pz);
x(i+1) = x(i) + (1/6)*(k_1x+2*k_2x+2*k_3x+k_4x)*h;
vx(i+1) = vx(i) + (1/6)*(k_1vx+2*k_2vx+2*k_3vx+k_4vx)*h;
px(i+1) = px(i) + (1/6)*(k_1px+2*k_2px+2*k_3px+k_4px)*h;
y(i+1) = y(i) + (1/6)*(k_1y+2*k_2y+2*k_3y+k_4y)*h;
vy(i+1) = vy(i) + (1/6)*(k_1vy+2*k_2vy+2*k_3vy+k_4vy)*h;
py(i+1) = py(i) + (1/6)*(k_1py+2*k_2py+2*k_3py+k_4py)*h;
z(i+1) = z(i) + (1/6)*(k_1z+2*k_2z+2*k_3z+k_4z)*h;
vz(i+1) = vz(i) + (1/6)*(k_1vz+2*k_2vz+2*k_3vz+k_4vz)*h;
pz(i+1) = pz(i) + (1/6)*(k_1pz+2*k_2pz+2*k_3pz+k_4pz)*h;
end
Error using solution>@(x,vx,y,vy,z,vz,px,py,pz)vx
Too many input arguments.
  1 commentaire
James Tursa
James Tursa le 31 Mar 2023
I would suggest you rewrite this code using vectors for your states instead of individual variables. E.g., define a state vector y as follows:
y(1) = x
y(2) = y
y(3) = z
y(4) = vx
y(5) = vy
y(6) = vz
y(7) = px
y(8) = py
y(9) = pz
Then define one derivative function handle:
f = @(t,y) = [y(4:6); other stuff ]
Your downstream code will be greatly simplified and easier to debug, and this f can be passed directly into ode45( ) for comparison results.

Connectez-vous pour commenter.

Réponses (2)

Cris LaPierre
Cris LaPierre le 30 Mar 2023
Modifié(e) : Cris LaPierre le 30 Mar 2023
The error is because you define fx with 9 inputs, but call it with 10.
fx = @(x,vx,y,vy,z,vz,px,py,pz) vx;
% vs
k_1x = fx(t(i),x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
It looks like you left out time when defining fx. Did you mean to do this (add time to function inputs)?
fx = @(t,x,vx,y,vy,z,vz,px,py,pz) vx;
or this (remove time from calling syntax)
k_1x = fx(x(i),vx(i),y(i),vy(i),z(i),vz(i),px(i),py(i),pz(i));
It looks like you'll have this same issue with all your functions.
  6 commentaires
Walter Roberson
Walter Roberson le 30 Mar 2023
That line does not exist in your posted code, not even as a comment.
AkB
AkB le 31 Mar 2023
The posted code is detailed. The error "Undefined function or variable 'x'. Error in del_2 (line 46) X=[x vx y vy z vz px py pz];" occurs when I vectorize everything, like this: X=[x,vx,y,vy,z,vx,px,py,pz]; F=@(t, X)[...all the eqns...]; Then vectorize K1,K2,K3,K4.

Connectez-vous pour commenter.


Torsten
Torsten le 31 Mar 2023
Modifié(e) : Torsten le 31 Mar 2023
I changed
(1./(1+(1/B).*C22d)).*(-c1.*(K22.*vy));
to
(1./(1+(1/B).*C22d)).*(-c1.*(K22d.*vy));
in the definition of fvy.
And you should check these strange cos(acos(...)) expressions in your differential equations.
ae=10 ; % aspect ratio
ds=1*10^-3 ; % equivalent dia
ecc=((ae.^2)-1)./((ae.^2)+1) ; % eccentricity
g=9.81;
nu=0.89*10^-6 ;
A=0.2; % wave amplitude
k=0.33/A; % k*A <= 0.33 for Linear wave theory to hold correct
w1=sqrt(g*k); % angular frequency
Tp=2*pi/w1 ; % time period
B=1.1;
theta_ini= 0 ; % azimuthal angle matrix
phi_ini= pi/4 ; % polar angle matrix
vp= 0.1*w1*A ; % Particle intrinsic velocity (m/s)
H=3700; % depth of ocean
Fr=w1*A./sqrt(g*H); % Froude number
z0= 3 ;
c1=18*nu/(B*ds^2) ;
% mass tensor in body axes
alpha0=(1./((ae.^2)-1).^(3/2)).*(2*sqrt((ae.^2)-1)+ae.*log((ae-sqrt(ae.^2-1))./(ae+sqrt(ae.^2-1)))) ;
beta0=(0.5./((ae.^2)-1).^(3/2)).*(2.*(ae.^2).*sqrt((ae.^2)-1)+ae.*log((ae-sqrt(ae.^2-1))./(ae+sqrt(ae.^2-1)))) ;
gamma0=beta0 ;
C11d=alpha0./(2-alpha0) ;
C22d=beta0./(2-beta0) ;
C33d=gamma0./(2-gamma0) ;
% resistance tensor in body axes
K11d=((4/3).*(ae.^(-1/3)).*(1-ae.^2))./(ae-((2*(ae.^2)-1).*log(ae+sqrt(ae.^2-1))./sqrt(ae.^2-1))) ;
K22d=((8/3)*(ae.^(-1/3)).*((ae.^2)-1))./(ae+((2*(ae.^2)-3).*log(ae+sqrt(ae.^2-1))./sqrt(ae.^2-1))) ;
K33d=K22d ;
K33_ini=K11d*cos(phi_ini)*cos(phi_ini)+K22d*sin(phi_ini)*sin(phi_ini) ; % K33 @t=0
% Time span for evolution of dynamics
t0 = 0; %seconds
tf =20*Tp; %seconds
dt=0.05 ;
tspan=t0:dt:tf ;
% Initial field velocity @t=0, x=0, z=0
u0x=w1*A;
u0y=0;
u0z=0;
% Initial particle velocity
v_ini_1p=u0x ;
v_ini_2p=u0y ;
v_ini_3p=-((B-1)*g*ds^2)/(18*nu*K33_ini)+u0z ;
% Initial particle orientation
initial_p1 = sin(phi_ini).*cos(theta_ini);
initial_p2 = sin(phi_ini).*sin(theta_ini);
initial_p3 = cos(phi_ini);
x = 0 ;
vx = v_ini_1p ;
y = 0 ;
vy = v_ini_2p ;
z = -z0 ;
vz = v_ini_3p ;
px = initial_p1 ;
py = initial_p2 ;
pz = initial_p3 ;
Y0 = [x;vx;y;vy;z;vz;px;py;pz];
[T,Y] = ode45(@fun,tspan,Y0);
plot(T,Y(:,1))
function dY = fun(t,Y)
% Y=[x; vx; y; vy; z; vz; px; py; pz];
x = Y(1);
vx = Y(2);
y = Y(3);
vy = Y(4);
z = Y(5);
vz = Y(6);
px = Y(7);
py = Y(8);
pz = Y(9);
ae=10 ; % aspect ratio
ds=1*10^-3 ; % equivalent dia
ecc=((ae.^2)-1)./((ae.^2)+1) ; % eccentricity
g=9.81;
nu=0.89*10^-6 ;
A=0.2; % wave amplitude
k=0.33/A; % k*A <= 0.33 for Linear wave theory to hold correct
w1=sqrt(g*k); % angular frequency
T=2*pi/w1 ; % time period
B=1.1;
theta_ini= 0 ; % azimuthal angle matrix
phi_ini= pi/4 ; % polar angle matrix
vp= 0.1*w1*A ; % Particle intrinsic velocity (m/s)
H=3700; % depth of ocean
Fr=w1*A./sqrt(g*H); % Froude number
z0= 3 ;
c1=18*nu/(B*ds^2) ;
% mass tensor in body axes
alpha0=(1./((ae.^2)-1).^(3/2)).*(2*sqrt((ae.^2)-1)+ae.*log((ae-sqrt(ae.^2-1))./(ae+sqrt(ae.^2-1)))) ;
beta0=(0.5./((ae.^2)-1).^(3/2)).*(2.*(ae.^2).*sqrt((ae.^2)-1)+ae.*log((ae-sqrt(ae.^2-1))./(ae+sqrt(ae.^2-1)))) ;
gamma0=beta0 ;
C11d=alpha0./(2-alpha0) ;
C22d=beta0./(2-beta0) ;
C33d=gamma0./(2-gamma0) ;
% resistance tensor in body axes
K11d=((4/3).*(ae.^(-1/3)).*(1-ae.^2))./(ae-((2*(ae.^2)-1).*log(ae+sqrt(ae.^2-1))./sqrt(ae.^2-1))) ;
K22d=((8/3)*(ae.^(-1/3)).*((ae.^2)-1))./(ae+((2*(ae.^2)-3).*log(ae+sqrt(ae.^2-1))./sqrt(ae.^2-1))) ;
K33d=K22d ;
K33_ini=K11d*cos(phi_ini)*cos(phi_ini)+K22d*sin(phi_ini)*sin(phi_ini) ; % K33 @t=0
dY(1) = vx;
dY(2) = (1./(1+(1/B).*(C11d.*sin(acos(pz)).*sin(acos(pz))+C22d.*cos(acos(pz)).*cos(acos(pz))))).*((1/B).*((w1^2)*A*exp(k*z)*sin(k*x-w1*t)+...
w1*A*exp(k*z)*cos(k*x-w1*t).*(-k*w1*A*exp(k*z)*sin(k*x-w1*t))+w1*A*exp(k*z)*sin(k*x-w1*t).*(k*w1*A*exp(k*z)*cos(k*x-w1*t)))+...
(1/B)*((C11d.*sin(acos(pz)).*sin(acos(pz))+C22d.*cos(acos(pz)).*cos(acos(pz)))*(w1^2)*A*exp(k*z)*sin(k*x-w1*t))-...
c1*((K11d.*sin(acos(pz)).*sin(acos(pz))+K22d.*cos(acos(pz)).*cos(acos(pz))).*(vx-w1*A*exp(k*z)*cos(k*x-w1*t))));
dY(3) = vy;
dY(4) = (1./(1+(1/B).*C22d)).*(-c1.*(K22d.*vy));
dY(5) = vz;
dY(6) = (1./(1+(1/B).*(C11d.*cos(acos(pz)).*cos(acos(pz))+C22d.*sin(acos(pz)).*sin(acos(pz))))).*((1/B).*(-(w1^2)*A*exp(k*z)*cos(k*x-w1*t)+...
w1*A*exp(k*z)*cos(k*x-w1*t).*(k*w1*A*exp(k*z)*cos(k*x-w1*t))+w1*A*exp(k*z)*sin(k*x-w1*t).*(k*w1*A*exp(k*z)*sin(k*x-w1*t)))+...
(1/B)*((C11d.*cos(acos(pz)).*cos(acos(pz))+C22d.*sin(acos(pz)).*sin(acos(pz)))*(-(w1^2)*A*exp(k*z)*cos(k*x-w1*t)))-...
c1.*((K11d.*cos(acos(pz)).*cos(acos(pz))+K22d.*sin(acos(pz)).*sin(acos(pz))).*(vz-w1*A*exp(k*z)*sin(k*x-w1*t)))-(1-1/B).*g);
dY(7) = ecc.*((-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*px+(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*pz)-ecc.*px.*((px.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*px+...
pz.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*px)+(px.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*pz+pz.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*pz));
dY(8) = -ecc.*py.*((px.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*px+pz.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*px)+...
(px.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*pz+pz.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*pz));
dY(9) = ecc.*((k*w1*A*exp(k*z)*cos(k*x-w1*t)).*px+(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*pz)-ecc.*pz.*((px.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*px+...
pz.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*px)+(px.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*pz+pz.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*pz));
dY = dY.';
end
  3 commentaires
AkB
AkB le 31 Mar 2023
Modifié(e) : Walter Roberson le 31 Mar 2023
Just a query: when I used the same eqns with another different code, it gives different results. Please check.
tic
clear;
close all;
clc;
ae=10 ; % aspect ratio
ds=1*10^-3 ; % equivalent dia
ecc=((ae.^2)-1)./((ae.^2)+1) ; % eccentricity
g=9.81;
nu=0.89*10^-6 ;
A=0.2; % wave amplitude
k=0.33/A; % k*A <= 0.33 for Linear wave theory to hold correct
w1=sqrt(g*k); % angular frequency
T=2*pi/w1 ; % time period
B=1.1;
theta_ini= 0 ; % azimuthal angle matrix
phi_ini= pi/4 ; % polar angle matrix
vp= 0.1*w1*A ; % Particle intrinsic velocity (m/s)
theta_ini_matrix =[0 pi/4 pi/2] ; % azimuthal angle matrix
phi_ini_matrix =[0 pi/4 pi/2] ; % polar angle matrix
vp_matrix=[10^-1 10^-2 10^-3].*w1*A ; % Particle intrinsic velocity (m/s)
H=3700; % depth of ocean
Fr=w1*A./sqrt(g*H); % Froude number
% Initial depth of particles
z0= 3 ;
% time scale of photoaxis
tau_s_matrix =[0.1 1 10] ;
% Time span for evolution of dynamics
t0 = 0; %seconds
tf =20*T; %seconds
interval = [t0 tf]; %time interval
n_points=200;
tValues = linspace(interval(1),interval(2),tf*n_points);
syms p1(t) p2(t) p3(t) x(t) y(t) z(t)
% mass tensor in body axes
alpha0=(1./((ae.^2)-1).^(3/2)).*(2*sqrt((ae.^2)-1)+ae.*log((ae-sqrt(ae.^2-1))./(ae+sqrt(ae.^2-1)))) ;
beta0=(0.5./((ae.^2)-1).^(3/2)).*(2.*(ae.^2).*sqrt((ae.^2)-1)+ae.*log((ae-sqrt(ae.^2-1))./(ae+sqrt(ae.^2-1)))) ;
gamma0=beta0 ;
C11d=alpha0./(2-alpha0) ;
C22d=beta0./(2-beta0) ;
C33d=gamma0./(2-gamma0) ;
% resistance tensor in body axes
K11d=((4/3).*(ae.^(-1/3)).*(1-ae.^2))./(ae-((2*(ae.^2)-1).*log(ae+sqrt(ae.^2-1))./sqrt(ae.^2-1))) ;
K22d=((8/3)*(ae.^(-1/3)).*((ae.^2)-1))./(ae+((2*(ae.^2)-3).*log(ae+sqrt(ae.^2-1))./sqrt(ae.^2-1))) ;
K33d=K22d ;
K33_ini=K11d*cos(phi_ini)*cos(phi_ini)+K22d*sin(phi_ini)*sin(phi_ini) ; % K33 @t=0
% Defining the governing equations
c1=18*nu/(B*ds^2) ;
vx=diff(x,t);
vy=diff(y,t);
vz=diff(z,t);
% Maxey–Riley Equation (passive)
eq1 = diff(x,t,t) == (1./(1+(1/B).*(C11d.*sin(acos(p3)).*sin(acos(p3))+C22d.*cos(acos(p3)).*cos(acos(p3))))).*((1/B).*((w1^2)*A*exp(k*z)*sin(k*x-w1*t)+...
w1*A*exp(k*z)*cos(k*x-w1*t).*(-k*w1*A*exp(k*z)*sin(k*x-w1*t))+w1*A*exp(k*z)*sin(k*x-w1*t).*(k*w1*A*exp(k*z)*cos(k*x-w1*t)))+...
(1/B)*((C11d.*sin(acos(p3)).*sin(acos(p3))+C22d.*cos(acos(p3)).*cos(acos(p3)))*(w1^2)*A*exp(k*z)*sin(k*x-w1*t))-...
c1*((K11d.*sin(acos(p3)).*sin(acos(p3))+K22d.*cos(acos(p3)).*cos(acos(p3))).*(vx-w1*A*exp(k*z)*cos(k*x-w1*t))));
eq2 = diff(y,t,t) == (1./(1+(1/B).*C22d)).*(-c1.*(K22d.*vy));
eq3 = diff(z,t,t) == (1./(1+(1/B).*(C11d.*cos(acos(p3)).*cos(acos(p3))+C22d.*sin(acos(p3)).*sin(acos(p3))))).*((1/B).*(-(w1^2)*A*exp(k*z)*cos(k*x-w1*t)+...
w1*A*exp(k*z)*cos(k*x-w1*t).*(k*w1*A*exp(k*z)*cos(k*x-w1*t))+w1*A*exp(k*z)*sin(k*x-w1*t).*(k*w1*A*exp(k*z)*sin(k*x-w1*t)))+...
(1/B)*((C11d.*cos(acos(p3)).*cos(acos(p3))+C22d.*sin(acos(p3)).*sin(acos(p3)))*(-(w1^2)*A*exp(k*z)*cos(k*x-w1*t)))-...
c1.*((K11d.*cos(acos(p3)).*cos(acos(p3))+K22d.*sin(acos(p3)).*sin(acos(p3))).*(vz-w1*A*exp(k*z)*sin(k*x-w1*t)))-(1-1/B).*g);
% Jeffery’s Equation
eq4 = diff(p1,t) == ecc.*((-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*p1+(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*p3)-ecc.*p1.*((p1.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*p1+...
p3.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*p1)+(p1.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*p3+p3.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*p3));
eq5 = diff(p2,t) == -ecc.*p2.*((p1.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*p1+p3.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*p1)+...
(p1.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*p3+p3.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*p3));
eq6 = diff(p3,t) == ecc.*((k*w1*A*exp(k*z)*cos(k*x-w1*t)).*p1+(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*p3)-ecc.*p3.*((p1.*(-k*w1*A*exp(k*z)*sin(k*x-w1*t)).*p1+...
p3.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*p1)+(p1.*(k*w1*A*exp(k*z)*cos(k*x-w1*t)).*p3+p3.*(k*w1*A*exp(k*z)*sin(k*x-w1*t)).*p3));
vars = [x(t); y(t); z(t); p1(t); p2(t); p3(t)];
V_p = odeToVectorField([eq2 eq1 eq3 eq4 eq5 eq6])
V_p = 
M_p = matlabFunction(V_p,'vars', {'t','Y'});
% Initial field velocity @t=0, x=0, z=0
u0x=w1*A;
u0y=0;
u0z=0;
% Initial particle velocity
v_ini_1p=u0x ;
v_ini_2p=u0y ;
v_ini_3p=-((B-1)*g*ds^2)/(18*nu*K33_ini)+u0z ;
% Initial particle orientation
initial_p1 = sin(phi_ini).*cos(theta_ini);
initial_p2 = sin(phi_ini).*sin(theta_ini);
initial_p3 = cos(phi_ini);
%# Solving for passive particle
y0_p=[0 v_ini_1p 0 v_ini_2p 0 v_ini_3p initial_p1 initial_p2 initial_p3]; %Initial Conditions for passive particle
ySol_p = ode45(M_p,interval,y0_p); %solution for passive particle
x_passive = deval(ySol_p,tValues,1);
y_passive = deval(ySol_p,tValues,3);
z_passive = -z0+deval(ySol_p,tValues,5);
v1_passive = deval(ySol_p,tValues,2);
v2_passive = deval(ySol_p,tValues,4);
v3_passive = deval(ySol_p,tValues,6);
p1_passive = deval(ySol_p,tValues,7);
p2_passive = deval(ySol_p,tValues,8);
p3_passive = deval(ySol_p,tValues,9);
phi_passive=acos(p3_passive) ;
theta_passive=asin(real(p2_passive./sin(phi_passive)));
%# plotting of results
plot(tValues,x_passive,'LineWidth',2)
xlabel('$t$','FontSize',20,'FontWeight','bold', 'Interpreter','latex');
ylabel('$x$', 'FontSize',20,'FontWeight','bold', 'Interpreter','latex');
set(gca,'FontSize',15);
toc
Elapsed time is 15.046097 seconds.
Torsten
Torsten le 31 Mar 2023
Modifié(e) : Torsten le 31 Mar 2023
Well, I won't go to search now where the equations differ. But they must differ - that's for sure.
Both systems are solved using ODE45. If the equations were identical, ODE45 would have produced the same solution.

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by