solving a second order non linear differential equation using RK 4TH order method

19 vues (au cours des 30 derniers jours)
haridas siddhartha
haridas siddhartha le 3 Avr 2023
Réponse apportée : kavi le 5 Fév 2025 à 6:48
Differential equation : h d^2h/dx^2 + (dh/dx)^2 - dh/dx * tan(ax) + c - h * sec^2(ax) * a = 0
Boundary conditions: h(x=0)=h0 and h(x=L)=h0
Dependent variable: h
Independent variable: x
constants: a,c,L,h0
Method to be used : RK 4th order
please help me
let y = h and z = dh/dx=dy/dx,dz/dx = a * sec^2(ax) + (1/h) * (z * tan(ax) - z^2 - c) confused how to give boundary conditions
  6 commentaires
haridas siddhartha
haridas siddhartha le 9 Avr 2023
Can you please help me with bvp4c or bvp5c i am kind of stuck Thank you
Torsten
Torsten le 9 Avr 2023
Please include your code so far.

Connectez-vous pour commenter.

Réponses (2)

Jack
Jack le 3 Avr 2023
Here's an example code in MATLAB for solving the given differential equation using the RK4 method. Note that you need to define the constants and initial conditions before running the code.
% Define constants and initial conditions
a = 1;
c = 1;
L = 1;
h0 = 1;
N = 1000; % Number of grid points
x = linspace(0, L, N)';
dx = x(2) - x(1);
h = h0*ones(N, 1); % Initial guess for h
dhdx = zeros(N, 1); % Initial guess for dh/dx
% Define the function f(x, y) = [dy/dx, d^2y/dx^2]
f = @(x, y) [y(2); ...
(-y(2)^2 + y(2)*tan(a*x) - c + h0*sec(a*x)^2*a)/h0];
% Solve the differential equation using the RK4 method
for n = 1:10000
k1 = dx*f(x, [h, dhdx]);
k2 = dx*f(x + dx/2, [h + k1(1:N)/2, dhdx + k1(N+1:end)/2]);
k3 = dx*f(x + dx/2, [h + k2(1:N)/2, dhdx + k2(N+1:end)/2]);
k4 = dx*f(x + dx, [h + k3(1:N), dhdx + k3(N+1:end)]);
h = h + (k1(1:N) + 2*k2(1:N) + 2*k3(1:N) + k4(1:N))/6;
dhdx = dhdx + (k1(N+1:end) + 2*k2(N+1:end) + 2*k3(N+1:end) + k4(N+1:end))/6;
end
% Plot the solution
plot(x, h);
xlabel('x');
ylabel('h');
title('Solution of the differential equation');

kavi
kavi le 5 Fév 2025 à 6:48
2.322y''+0.5172y'+0.3124y'^3+0.0914y+0.6889y^3=0;y(0)=0.0872,Y'(0)=0

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by