Error while trying to train network
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Khalifa Alsuwaidi
le 12 Avr 2023
Réponse apportée : Khalifa Alsuwaidi
le 12 Avr 2023
I've been trying to make a system that will read images from an image store to classify images of solar panels as soiled or not.
I can't seem to be able to make the training work. The GUI starts but no iterations are done.
Code below:
infolder = 'C:\Users\Potato\Desktop\CDP\Solar_Panel_Soiling_Image_dataset\PanelImages';
imgFiles = dir([infolder,filesep,'\*.jpg']) ;
imds = imageDatastore(infolder,'IncludeSubfolders',true,'LabelSource','foldernames');
figure;
j= 0
for i = 1:20
j = j +1
subplot(4,5,j);
imshow(imds.Files{i}); % display the first 20 images
end
figure;
perm = randperm(10000,20);
for i = 1:20
subplot(4,5,i);
imshow(imds.Files{perm(i)});
end
labelCount = countEachLabel(imds)
img = readimage(imds,1);
size(img)
%% Training and Validation Sets
numTrainFiles = 5000;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
%% Network Archeticture
layers = [
imageInputLayer([192 192 3])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(1)
softmaxLayer
classificationLayer];
%% Training Options
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',4, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
%% Validation Set Classification and Accuracy
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation)
Shows me this error:
Operation terminated by user during matlab.io.datastore.internal.fileset.CompressedFileSet/getFilesAsCellStr
In matlab.io.datastore.internal.fileset.ResolvedFileSet/getFiles (line 530)
files = getFilesAsCellStr(fs, ii);
In matlab.io.datastore.FileSet/getFiles (line 568)
files = fs.InternalFileSet.getFiles(ii);
In matlab.io.datastore.splitter.WholeFileCustomReadFileSetSplitter/getFilesAsCellStr (line 111)
filesAsCellStr = getFiles(splitter.Files, indices);
In matlab.io.datastore.ImageDatastore/nextFilesToRead (line 814)
files = imds.Splitter.getFilesAsCellStr(idxes);
In matlab.io.datastore.ImageDatastore/preFetchRead (line 603)
[filesToRead, idxes] = nextFilesToRead(imds);
In matlab.io.datastore.ImageDatastore/read (line 68)
[data, info] = preFetchRead(imds);
In nnet.internal.cnn.datastore.ImageDatastoreMiniBatchDatastore/read (line 39)
[data,info] = self.imds.read();
In nnet.internal.cnn.dispatcher.MiniBatchDatastoreDispatcher/readData (line 306)
[data,info] = read(this.Datastore);
In nnet.internal.cnn.dispatcher.MiniBatchDatastoreDispatcher/next (line 179)
[miniBatchData, miniBatchResponse] = readData(this);
In nnet.internal.cnn.util.ValidationStatelessPredictStrategy/computeLossAndMetric (line 57)
[X, T, idx] = data.next();
In nnet.internal.cnn.util.ValidationStatelessPredictStrategy/predictAndComputeMetrics (line 39)
metrics = computeLossAndMetric(this, net, data, "accuracy", "validationAccuracy");
In nnet.internal.cnn.util.ValidationReporter/addValidationToSummary (line 123)
metrics = this.PredictStrategy.predictAndComputeMetrics( net, this.Data );
In nnet.internal.cnn.util.ValidationReporter/computeIteration (line 74)
this.addValidationToSummary(summary, net);
In nnet.internal.cnn.util.VectorReporter/computeAndReport (line 68)
feval( method, this.Reporters{i}, varargin{:} );
In nnet.internal.cnn.util.VectorReporter/computeIteration (line 24)
computeAndReport( this, 'computeIteration', summary, network );
In nnet.internal.cnn.Trainer/train (line 148)
reporter.computeIteration( this.Summary, net );
In nnet.internal.cnn.trainNetwork.doTrainNetwork (line 108)
trainedNet = trainer.train(trainedNet, trainingDispatcher);
In trainNetwork (line 189)
[trainedNet, info] = nnet.internal.cnn.trainNetwork.doTrainNetwork(factory,varargin{:});
In test (line 68)
net = trainNetwork(imdsTrain,layers,options);
I've tried changing different variables to fix this with no luck. I'm a beginner so take it easy.
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!