Triangular-weighted moving average filter

14 vues (au cours des 30 derniers jours)
Mateusz Rzeszowski
Mateusz Rzeszowski le 13 Avr 2023
Hi,
I`m looking for function or source code for Triangular-weighted moving average filter to apply it and make my data processing.
High-frequency noise shall be removed from the measured signals using a triangular-weighted moving average with a smoothing width of 100 ms.
can someone share the experience ?
  2 commentaires
Jon
Jon le 13 Avr 2023
Mateusz Rzeszowski
Mateusz Rzeszowski le 13 Avr 2023
nope

Connectez-vous pour commenter.

Réponses (2)

Image Analyst
Image Analyst le 13 Avr 2023
Use conv and set up your kernel to be a triangle shape.
  1 commentaire
Dan
Dan le 30 Juil 2025
Try:
tri_weights = triang('sz');
filtered_data = conv('data', tri_weights, "same") / sum(tri_weights);

Connectez-vous pour commenter.


Meg Noah
Meg Noah le 9 Août 2025
Here's an example of high frequency noise being removed with a triangular filter, if by width you mean the base of the triangle:
signal = repmat([zeros(1,500) ones(1,2000) zeros(1,500)],1,10);
time_ms = 0.1*(1:numel(signal));
dt_ms = time_ms(2)-time_ms(1);
filter = triang(round(100/dt_ms))/sum(triang(round(100/dt_ms)));
fprintf(1,'Sum of energy conserving filter should be 1 = %f\n', sum(filter(:)));
Sum of energy conserving filter should be 1 = 1.000000
fprintf(1,'Filter width = %d samples = %f ms',numel(filter),numel(filter)*dt_ms);
Filter width = 1000 samples = 100.000000 ms
smooth_signal = conv(signal,filter,'same');
plot(time_ms,signal,'b','DisplayName','Signal');
hold on
plot(time_ms,smooth_signal,'r','DisplayName','Smoothed Signal');
legend('location','best');
xlabel('Time [ms]');
ylabel('Signal');
You can also apply the convolution theorem to do it with Fourier transforms.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by