Solving System of 3 equations non trivial
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Jonathan Leutz
le 14 Avr 2023
Commenté : Jonathan Leutz
le 15 Avr 2023
Px = 8.08*10^5
Py = 4.63*10^5
P_A = 9.54*10^4
pCr = .89*10^5
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
B = [0; 0; 0];
for pCr = .88*10^5:.1:.9*10^5
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
X = linsolve(m,B)
if X ~= [0;0;0]
PCrit = pcr;
break;
end
end
I already know one critical values and my current proccess odviously does not work by testing a lot of Pcr values until I do not have a trivial I think there is a way to do it through Linear Algebra but I am brain farting right now.
0 commentaires
Réponse acceptée
Walter Roberson
le 14 Avr 2023
Px = 8.08*10^5
Py = 4.63*10^5
P_A = 9.54*10^4
syms pCr;
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
%are there general X such that m*x = [0;0;0] ?
%if so that would be the null space
null(m)
%nope, it is generally empty.
%what happens if we substitute in a particular value for pCr
m123 = subs(m, pCr, 123);
rank(m123)
null(m123)
%nope, full rank, no non-trival null space.
%but are there specific values of pCr that lead to lower rank?
pCrit = solve(det(m))
vpa(pCrit)
for K = 1 : size(pCrit,1)
disp('value being substituted for pCr:')
disp(pCrit(K))
disp('substituted matrix')
M = subs(m, pCr, pCrit(K))
disp('rank of substituted')
rank(M)
disp('null space of substituted')
null(M)
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!