Solving System of 3 equations non trivial

5 vues (au cours des 30 derniers jours)
Jonathan Leutz
Jonathan Leutz le 14 Avr 2023
Commenté : Jonathan Leutz le 15 Avr 2023
Px = 8.08*10^5
Py = 4.63*10^5
P_A = 9.54*10^4
pCr = .89*10^5
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
B = [0; 0; 0];
for pCr = .88*10^5:.1:.9*10^5
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
X = linsolve(m,B)
if X ~= [0;0;0]
PCrit = pcr;
break;
end
end
I already know one critical values and my current proccess odviously does not work by testing a lot of Pcr values until I do not have a trivial I think there is a way to do it through Linear Algebra but I am brain farting right now.

Réponse acceptée

Walter Roberson
Walter Roberson le 14 Avr 2023
Px = 8.08*10^5
Px = 808000
Py = 4.63*10^5
Py = 463000
P_A = 9.54*10^4
P_A = 9.5400e+04
syms pCr;
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
m = 
%are there general X such that m*x = [0;0;0] ?
%if so that would be the null space
null(m)
ans = Empty sym: 3-by-0
%nope, it is generally empty.
%what happens if we substitute in a particular value for pCr
m123 = subs(m, pCr, 123);
rank(m123)
ans = 3
null(m123)
ans = Empty sym: 3-by-0
%nope, full rank, no non-trival null space.
%but are there specific values of pCr that lead to lower rank?
pCrit = solve(det(m))
pCrit = 
vpa(pCrit)
ans = 
for K = 1 : size(pCrit,1)
disp('value being substituted for pCr:')
disp(pCrit(K))
disp('substituted matrix')
M = subs(m, pCr, pCrit(K))
disp('rank of substituted')
rank(M)
disp('null space of substituted')
null(M)
end
value being substituted for pCr:
463000
substituted matrix
M = 
rank of substituted
ans = 2
null space of substituted
ans = 
value being substituted for pCr:
substituted matrix
M = 
rank of substituted
ans = 2
null space of substituted
ans = 
value being substituted for pCr:
substituted matrix
M = 
rank of substituted
ans = 2
null space of substituted
ans = 

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by