How to stop time loop when steady state is reached?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm using unsteady case. so, it will reach a steady state at a certain time level. I fixed time at 'j'th column wise and it ran at maximum time level, but I want to stop the 'time loop' when steady state is reached. Even though I'm using a steady criteria i.e error >tolerance along dt>0 using 'while' loop, it didn't work and using dt>0, my code didn't stop.
clc; close all; clear all;
ymax=20; n=80; dy=ymax/n;
xmax=1; m=20; dx=xmax/m;
tmax=100; nt=500; dt=tmax/nt; t=0:dt:tmax;
%tol=1e-5; max_difference=1.0;
UOLD=zeros(n,nt); VOLD=zeros(n,nt);
TNEW=0; TOLD=ones(n,nt);
A=zeros([1,m]);
B=A;
C=A;
D=A;
T=TOLD;
tic
%while dt>0 && max_difference>tol
for j=1:m
for i=1:n
if j>i
C(i)=(dt*VOLD(i,j)/4*dy)-((dt)/(2*dy^2));
elseif i>j
A(i)=(-dt*VOLD(i,j)/4*dy)-((dt)/(2*dy^2));
elseif i==j
B(i)=1+(dt*UOLD(i,j)/2*dx)+((dt)/(dy^2));
end
end
end
for j=2:m
for i=1:n
D(i)=(-dt*UOLD(i,j)*((-TNEW+TOLD(i,j)-TNEW)/(2*dx)))+(((dt)/(2*dy^2))*(TOLD(i+1,j)-(2*TOLD(i,j))+TNEW))-(((dt*VOLD(i,j))/(4*dy))*(TNEW-TOLD(i+1,j)-TOLD(i,j)));
end
end
T(:,j)=TriDiag(A,B,C,D); %call tridiagonal
dt=0.2+dt;
Thanks for any advice.
3 commentaires
Mathieu NOE
le 20 Avr 2023
ok
I am not sure to understand all the details of your code , but something disturbs me
if we consider that the metric (error) that defines how your computation converge to the supposed steady state values
difference = (abs(T(:,j)-T(:,j-1))./max(1,abs(T(:,j-1))));
then if I plot it for the 80 iterations , we see the difference increasing and not decreasing .... so I wonder if you have 100% confidence in your code
ploted with y log scale to make it clear :
Image Analyst
le 20 Avr 2023
Which loop, the one over i or the one over j, is the "time loop"?
I don't see any line like "error >tolerance". Where exactly is that line?
Réponse acceptée
Mathieu NOE
le 21 Avr 2023
hello
think I have understood
your difference computation must be indexed with j , so it must be inside the for loop
I used a break to exist the for loop when the difference is below tol
now, tol = 1e-5 will not be achieved with only 500 iteration
for the sake of the demo I put tol = 1e-2 and it will do only 103 iterations
plot of difference vs j with tol = 1e-5
plot of difference vs j with tol = 1e-2
code :
clc; close all; clear all;
ymax=20; n=80; dy=ymax/n;
xmax=1; m=20; dx=xmax/m;
tmax=100; nt=500; dt=tmax/nt; t=0:dt:tmax;
tol=1e-2;
UOLD=zeros(n,nt); VOLD=zeros(n,nt);
TNEW=0; TOLD=TNEW*ones(n,nt); TWALL=ones(1,length(t));
A=zeros([1,m]);
B=A;
C=A;
D=A;
T=TOLD;
difference(1) = 1;
tic
for j=1:nt
for i=1:n
if j>i
C(i)=(dt*VOLD(i,j)/4*dy)-((dt)/(2*dy^2));
elseif i>j
A(i)=(-dt*VOLD(i,j)/4*dy)-((dt)/(2*dy^2));
elseif i==j
B(i)=1+(dt*UOLD(i,j)/2*dx)+((dt)/(dy^2));
end
end
end
for j=2:nt
if j==1
for i=1:n
if i==1
D(i)=(-dt*UOLD(i,j)*((-TNEW+TOLD(i,j)-TNEW)/(2*dx)))+(((dt)/(2*dy^2))*(TOLD(i+1,j)-(2*TOLD(i,j))+TNEW))-(((dt*VOLD(i,j))/(4*dy))*(TNEW-TOLD(i+1,j)-TOLD(i,j)))-((dt/(4*dy))*VOLD(i,j))-((dt/2*dy^2)*TNEW);
elseif i==n
D(i)=(-dt*UOLD(i,j)*((-TNEW+TOLD(i,j)-TNEW)/(2*dx)))+(((dt)/(2*dy^2))*(TWALL(j)-(2*TOLD(i,j))+TOLD(i-1,j)))-(((dt*VOLD(i,j))/(4*dy))*(TOLD(i-1,j)-TWALL(j)+TOLD(i,j)))-(((-dt)/(4*dy))*VOLD(i,j))-((dt/2*dy^2)*TWALL);
else
D(i)=(-dt*UOLD(i,j)*((-TNEW+TOLD(i,j)-TNEW)/(2*dx)))+(((dt)/(2*dy^2))*(TOLD(i+1,j)-(2*TOLD(i,j))+TOLD(i-1,j)))-(((dt*VOLD(i,j))/(4*dy))*(TOLD(i-1,j)-TOLD(i+1,j)+TOLD(i,j)));
end
end
else
for i=1:n
if i==1
D(i)=(-dt*UOLD(i,j)*((-T(i,j-1)+TOLD(i,j)-TOLD(i,j-1))/(2*dx)))+(((dt)/(2*dy^2))*(TOLD(i+1,j)-(2*TOLD(i,j))+TNEW))-(((dt*VOLD(i,j))/(4*dy))*(TNEW-TOLD(i+1,j)+TOLD(i,j)))-((dt/(4*dy))*VOLD(i,j))-((dt/2*dy^2)*TNEW);
elseif i==n
D(i)=(-dt*UOLD(i,j)*((-T(i,j-1)+TOLD(i,j)-TOLD(i,j-1))/(2*dx)))+(((dt)/(2*dy^2))*(TWALL(j)-(2*TOLD(i,j))+TOLD(i-1,j)))-(((dt*VOLD(i,j))/(4*dy))*(TOLD(i-1,j)-TWALL(j)+TOLD(i,j)))-(((-dt)/(4*dy))*VOLD(i,j))-((dt/2*dy^2)*TWALL(j));
else
D(i)=(-dt*UOLD(i,j)*((-T(i,j-1)+TOLD(i,j)-TOLD(i,j-1))/(2*dx)))+(((dt)/(2*dy^2))*(TOLD(i+1,j)-(2*TOLD(i,j))+TOLD(i-1,j)))-(((dt*VOLD(i,j))/(4*dy))*(TOLD(i-1,j)-TOLD(i+1,j)+TOLD(i,j)));
end
end
end
T(:,j)=TriDiag(A,B,C,D); %call tridiagonal
dt=0.2+dt;
TOLD=T;
difference(j) = max(abs(T(:,j)-T(:,j-1))./max(1,abs(T(:,j-1))));
if difference(j)<tol
break
end
end
4 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Digital Filter Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!