fuzzy tuning error using a custom cost function
13 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
after runing this command to tune
fisRuleTuned = tunefis(FIS1,rule,fcn,options);
i am getting these errors
Error using costFcn
Unrecognized method, property, or field 'signals' for class
'Simulink.SimulationData.Dataset'.
Error in @(fis)costFcn(fis,model,minLevel,refLevel,wsVars,minData)
Error in fuzzy.tuning.internal.fisFitnessFcnWithoutIntCon>localFcn (line 54)
fitness = fitnessFcn(fis);
Error in fuzzy.tuning.internal.fisFitnessFcnWithoutIntCon (line 25)
fitness(i) = localFcn(params(i,:),fis,spec,fitnessFcn,discSet, ...
Error in fuzzy.tuning.internal.optimFISWithGA>@(x)fuzzy.tuning.internal.fisFitnessFcnWithoutIntCon(x,pdata.fis,pdata.spec,evalFcn,pdata.discset,options.IgnoreInvalidParameters,false,options.TuningOutputSinks) (line 70)
p.fitnessfcn = @(x)fuzzy.tuning.internal.fisFitnessFcnWithoutIntCon(...
Error in createAnonymousFcn>@(x)fcn(x,FcnArgs{:}) (line 11)
fcn_handle = @(x) fcn(x,FcnArgs{:});
Error in makeState (line 58)
firstMemberScore = FitnessFcn(state.Population(initScoreProvided+1,:));
Error in galincon (line 24)
state = makeState(GenomeLength,FitnessFcn,Iterate,output.problemtype,options);
Error in ga (line 420)
[x,fval,exitFlag,output,population,scores] = galincon(FitnessFcn,nvars, ...
Error in fuzzy.tuning.internal.optimFISWithGA (line 89)
[params,fval,exitflag,output,population,scores] = ga(p);
Error in tunefis (line 326)
[varargout{1:nargout}] = fuzzy.tuning.internal.optimFISWithGA(pdata,fitnessFcn,options,kFoldData);
Caused by:
Failure in initial user-supplied fitness function
evaluation. GA cannot continue.
the cost function i have used below
function cost = costFcn(fis,model,minLevel,refLevel,wsVarNames,varargin)
assignin('base',wsVarNames,fis)
out = sim(model);
glucose = out.yout.signals(1).values;
insulin = out.yout.signals(2).values;
tout = out.yout.time;
err = glucose - refLevel;
err(glucose<minLevel) = 100;
errSquare = err.^2;
meanSquare = mean(errSquare);
cost = sqrt(meanSquare);
if isempty(varargin)
return
end
data = varargin{1};
if cost < data.MinCost
data.MinCost = cost;
data.MinGlucose = glucose;
data.MinInsulin = insulin;
data.fisMin = fis;
data.Tout = tout;
end
end
1 commentaire
Sam Chak
le 24 Avr 2023
Have you tried extracting the data from out.yout.signals, and then pass them to the CostFcn as trainingData?
function cost = costFcn(fis, model, minLevel, refLevel, wsVarNames, varargin)
assignin('base', wsVarNames, fis)
out = sim(model);
glucose = out.yout.signals(1).values;
insulin = out.yout.signals(2).values;
tout = out.yout.time;
err = glucose - refLevel;
err(glucose<minLevel) = 100;
errSquare = err.^2;
meanSquare = mean(errSquare);
cost = sqrt(meanSquare);
if isempty(varargin)
return
end
data = varargin{1};
if cost < data.MinCost
data.MinCost = cost;
data.MinGlucose = glucose;
data.MinInsulin = insulin;
data.fisMin = fis;
data.Tout = tout;
end
end
Réponses (1)
Akshat Dalal
le 31 Août 2023
Hello Naveen,
I understand you are facing some errors in using a custom cost function while tuning a fuzzy system using the Fuzzy Logic Toolbox.
I believe your custom cost function is inspired from the Fuzzy Logic Toolbox example provided in documentation - https://in.mathworks.com/help/releases/R2023a/fuzzy/design-fuzzy-logic-controller-for-artificial-pancreas.html
Assuming that is the case, I ran this example using your custom cost function and it did not produce any errors. I believe this error is occurring due to a discrepancy in your model. You could refer the example documentation for more information.
0 commentaires
Voir également
Catégories
En savoir plus sur Fuzzy Inference System Tuning dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!