Cantor function in matlab
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
How can we create a recursive sequence in matlab that converges to the cantor function?
f_0(x) will be equal to x
Then, for every integer n ≥ 0, the next function fn+1(x) will be defined in terms of fn(x) as follows:
Let fn+1(x) = 1/2 × fn(3x), when 0 ≤ x ≤ 1/3 ;
Let fn+1(x) = 1/2, when 1/3 ≤ x ≤ 2/3 ;
Let fn+1(x) = 1/2 + 1/2 × fn(3 x − 2), when 2/3 ≤ x ≤ 1.
I can define a non recursive function pretty easily(even one that is piecewise), but how to do a recursive function in matlab?
0 commentaires
Réponse acceptée
Torsten
le 29 Avr 2023
Déplacé(e) : Torsten
le 29 Avr 2023
N = 20;
f{1} = @(x) x;
for i = 1:N-1
f{i+1} = @(x)(0.5*f{i}(3*x).*(x<=1/3) + 0.5.*(x>1/3 & x<2/3) + (0.5+0.5*f{i}(3*x-2)).*(x>=2/3 & x <=1));
end
x = linspace(0,1,1000);
plot(x,f{N}(x))
5 commentaires
Torsten
le 30 Avr 2023
Modifié(e) : Torsten
le 30 Avr 2023
If x is an array of values, 0.5*f{i}(3*x) and (x<=1/3) are both arrays. And those arrays have to be multiplied componentwise. That's what .* is for. If you are sure your function is called only for a single value for x, you can also use * instead.
Do you understand what (x<=1/3) returns ? It returns 0 (false) for x>1/3 and 1 (true) for x<=1/3.
Thus the three different terms in the definition of f{i+1} constitute the piecewise definition of f{i+1}.
Plus de réponses (2)
Cris LaPierre
le 29 Avr 2023
You might find these 3 videos from the Mastering Programming in MATLAB Coursera course helpful.
0 commentaires
John D'Errico
le 29 Avr 2023
To be honest, I'd probably be lazy, and just use the simple algorithm found in wikipedia.
That is, expresses the number in ternary. Easy enough to do. The largest integer power of 3 that is less than flintmax is 3^33.
flintmax
3^33
That means you can get 33 ternary digits for any decimal number between 0 and 1. We can do it like this:
ternary = @(x) dec2base(round(3^33*x),3,33);
t = ternary(0.123)
We can verify the result, as:
format long g
dot(3.^(-1:-1:-33),t - '0')
Now just use the algorithm shown on the wiki page. For example, we know that f_inf(1/4) = 1/3.
T = ternary(1/4)
ind = find(T == '1',1,'first')
T(ind + 1:end) = '0' % replace the digits after the first 1, with 0.
% replace all 2's with a 1
T(T == '2') = '1' % replace all 2's with a 1.
% finally, represent the number in base 2.
format rat
dot(T - '0',2.^(-1:-1:-33))
Unfortunately, the result will have only 33 binary bits in the final representation as I did it here.
Yes, this is probably homework, since nobody is going to be computing this for any normal reason. :) And that means you were instructed to do it recursively, using the supplied set of relations.
Voir également
Catégories
En savoir plus sur Logical dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
